4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Illuminating Biological Interactions with in Vivo Protein Footprinting

      research-article
      ,
      Analytical Chemistry
      American Chemical Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Protein footprinting coupled with mass spectrometry is being increasingly used for the study of protein interactions and conformations. The hydroxyl radical footprinting method, fast photochemical oxidation of proteins (FPOP), utilizes hydroxyl radicals to oxidatively modify solvent accessible amino acids. Here, we describe the further development of FPOP for protein structural analysis in vivo (IV-FPOP) with Caenorhabditis elegans. C. elegans, part of the nematode family, are used as model systems for many human diseases. The ability to perform structural studies in these worms would provide insight into the role of structure in disease pathogenesis. Many parameters were optimized for labeling within the worms including the microfluidic flow system and hydrogen peroxide concentration. IV-FPOP was able to modify several hundred proteins in various organs within the worms. The method successfully probed solvent accessibility similarily to in vitro FPOP, demonstrating its potential for use as a structural technique in a multiorgan system. The coupling of the method with mass spectrometry allows for amino-acid-residue-level structural information, a higher resolution than currently available in vivo methods.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          The fluorescent toolbox for assessing protein location and function.

          Advances in molecular biology, organic chemistry, and materials science have recently created several new classes of fluorescent probes for imaging in cell biology. Here we review the characteristic benefits and limitations of fluorescent probes to study proteins. The focus is on protein detection in live versus fixed cells: determination of protein expression, localization, activity state, and the possibility for combination of fluorescent light microscopy with electron microscopy. Small organic fluorescent dyes, nanocrystals ("quantum dots"), autofluorescent proteins, small genetic encoded tags that can be complexed with fluorochromes, and combinations of these probes are highlighted.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics.

            Modern biomedical research greatly benefits from large-scale genome-sequencing projects ranging from studies of viruses, bacteria, and yeast to multicellular organisms, like Caenorhabditis elegans. Comparative genomic studies offer a vast array of prospects for identification and functional annotation of human ortholog genes. We presented a novel comparative proteomic approach for assembling human gene contigs and assisting gene discovery. The C. elegans proteome was used as an alignment template to assist in novel human gene identification from human EST nucleotide databases. Among the available 18,452 C. elegans protein sequences, our results indicate that at least 83% (15,344 sequences) of C. elegans proteome has human homologous genes, with 7,954 records of C. elegans proteins matching known human gene transcripts. Only 11% or less of C. elegans proteome contains nematode-specific genes. We found that the remaining 7,390 sequences might lead to discoveries of novel human genes, and over 150 putative full-length human gene transcripts were assembled upon further database analyses. [The sequence data described in this paper have been submitted to the
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Use of fluorescent probes: their effect on cell biology and limitations.

                Bookmark

                Author and article information

                Journal
                Anal Chem
                Anal. Chem
                ac
                ancham
                Analytical Chemistry
                American Chemical Society
                0003-2700
                1520-6882
                26 April 2019
                21 May 2019
                : 91
                : 10
                : 6577-6584
                Affiliations
                [1]Department of Pharmaceutical Sciences, University of Maryland , Baltimore, Maryland 21201, United States
                Author notes
                Article
                10.1021/acs.analchem.9b00244
                6533598
                31025855
                2d4ff6b6-0beb-4aa7-b8b7-61cf55a54ec2
                Copyright © 2019 American Chemical Society

                This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

                History
                : 14 January 2019
                : 26 April 2019
                Categories
                Article
                Custom metadata
                ac9b00244
                ac-2019-00244d

                Analytical chemistry
                Analytical chemistry

                Comments

                Comment on this article