8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Development of an autophagy-related gene expression signature for prognosis prediction in prostate cancer patients

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Prostate cancer (PCa) is one of the most prevalent cancers that occur in men worldwide. Autophagy-related genes (ARGs) may play an essential role in multiple biological processes of prostate cancer. However, ARGs expression signature has rarely been used to investigate the association between autophagy and prognosis in PCa. This study aimed to identify and assess prognostic ARGs signature to predict overall survival (OS) and disease-free survival (DFS) in PCa patients.

          Methods

          First, a total of 234 autophagy-related genes were obtained from The Human Autophagy Database. Then, differentially expressed ARGs were identified in prostate cancer patients based on The Cancer Genome Atlas (TCGA) database. The univariate and multivariate Cox regression analysis was performed to screen hub prognostic ARGs for overall survival and disease-free survival, and the prognostic model was constructed. Finally, the correlation between the prognostic model and clinicopathological parameters was further analyzed, including age, T status, N status, and Gleason score.

          Results

          The OS-related prognostic model was constructed based on the five ARGs (FAM215A, FDD, MYC, RHEB, and ATG16L1) and significantly stratified prostate cancer patients into high- and low-risk groups in terms of OS (HR = 6.391, 95% CI = 1.581– 25.840, P < 0.001). The area under the receiver operating characteristic curve (AUC) of the prediction model was 0.84. The OS-related prediction model values were higher in T3-4 than in T1-2 (P = 0.008), and higher in Gleason score  > 7 than  ≤ 7 (P = 0.015). In addition, the DFS-related prognostic model was constructed based on the 22 ARGs (ULK2, NLRC4, MAPK1, ATG4D, MAPK3, ATG2A, ATG9B, FOXO1, PTEN, HDAC6, PRKN, HSPB8, P4HB, MAP2K7, MTOR, RHEB, TSC1, BIRC5, RGS19, RAB24, PTK6, and NRG2), with AUC of 0.85 (HR = 7.407, 95% CI = 4.850–11.320, P < 0.001), which were firmly related to T status (P < 0.001), N status (P = 0.001), and Gleason score (P < 0.001).

          Conclusions

          Our ARGs based prediction models are a reliable prognostic and predictive tool for overall survival and disease-free survival in prostate cancer patients.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Inflammatory signaling cascades and autophagy in cancer

          Tumor-associated inflammation is predictive of poor prognosis and drives a variety of tumorigenic phenotypes, including tumor proliferation and survival, angiogenesis, invasiveness, and metastasis. Here, we review mammalian data addressing the interaction of macroautophagy/autophagy with key signaling cascades associated with tumor inflammation. Although our understanding of this area remains incomplete, certain inflammatory pathways have emerged as important mediators of the crosstalk between autophagy and inflammation in tumors. Consistent with the multifaceted roles for autophagy in tumor cells, results to date support the hypothesis that inflammatory pathways can suppress or induce autophagy in a context-dependent manner; in turn, autophagy suppresses or promotes inflammation in cancers. Furthermore, emerging data suggest that autophagy may influence cytokine production and secretion via diverse mechanisms, which has implications for the immune and inflammatory microenvironment in tumors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inhibition of mammalian target of rapamycin or apoptotic pathway induces autophagy and radiosensitizes PTEN null prostate cancer cells.

            The phosphatidylinositol 3-kinase/Akt pathway plays a critical role in oncogenesis, and dysregulation of this pathway through loss of PTEN suppression is a particularly common phenomenon in aggressive prostate cancers. The mammalian target of rapamycin (mTOR) is a downstream signaling kinase in this pathway, exerting prosurvival influence on cells through the activation of factors involved in protein synthesis. The mTOR inhibitor rapamycin and its derivatives are cytotoxic to a number of cell lines. Recently, mTOR inhibition has also been shown to radiosensitize endothelial and breast cancer cells in vitro. Because radiation is an important modality in the treatment of prostate cancer, we tested the ability of the mTOR inhibitor RAD001 (everolimus) to enhance the cytotoxic effects of radiation on two prostate cancer cell lines, PC-3 and DU145. We found that both cell lines became more vulnerable to irradiation after treatment with RAD001, with the PTEN-deficient PC-3 cell line showing the greater sensitivity. This increased susceptibility to radiation is associated with induction of autophagy. Furthermore, we show that blocking apoptosis with caspase inhibition and Bax/Bak small interfering RNA in these cell lines enhances radiation-induced mortality and induces autophagy. Together, these data highlight the emerging importance of mTOR as a molecular target for therapeutic intervention, and lend support to the idea that nonapoptotic modes of cell death may play a crucial role in improving tumor cell kill.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Dihydroceramide accumulation mediates cytotoxic autophagy of cancer cells via autolysosome destabilization

              ABSTRACT Autophagy is considered primarily a cell survival process, although it can also lead to cell death. However, the factors that dictate the shift between these 2 opposite outcomes remain largely unknown. In this work, we used Δ9-tetrahydrocannabinol (THC, the main active component of marijuana, a compound that triggers autophagy-mediated cancer cell death) and nutrient deprivation (an autophagic stimulus that triggers cytoprotective autophagy) to investigate the precise molecular mechanisms responsible for the activation of cytotoxic autophagy in cancer cells. By using a wide array of experimental approaches we show that THC (but not nutrient deprivation) increases the dihydroceramide:ceramide ratio in the endoplasmic reticulum of glioma cells, and this alteration is directed to autophagosomes and autolysosomes to promote lysosomal membrane permeabilization, cathepsin release and the subsequent activation of apoptotic cell death. These findings pave the way to clarify the regulatory mechanisms that determine the selective activation of autophagy-mediated cancer cell death.
                Bookmark

                Author and article information

                Contributors
                hudaixing523@163.com
                jiangli0529@163.com
                luosheng0618@163.com
                zhaoxintjdx@163.com
                122296580@qq.com
                494475057@qq.com
                tangwei2060@163.com
                Journal
                J Transl Med
                J Transl Med
                Journal of Translational Medicine
                BioMed Central (London )
                1479-5876
                7 April 2020
                7 April 2020
                2020
                : 18
                : 160
                Affiliations
                [1 ]GRID grid.452206.7, Department of Urology, , The First Affiliated Hospital of Chongqing Medical University, ; No.1 Youyi Road, Yuan Jiagang, Yuzhong District, Chongqing, 400010 People’s Republic of China
                [2 ]Department of Urology, The People’s Hospital of Nan Chuan, Chongqing, 408400 People’s Republic of China
                Article
                2323
                10.1186/s12967-020-02323-x
                7137440
                32264916
                2cc74bbd-f0a5-4fcb-8676-c0e3ef987e18
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 6 November 2019
                : 28 March 2020
                Categories
                Research
                Custom metadata
                © The Author(s) 2020

                Medicine
                tcga,geo,prostate cancer,survival,autophagy
                Medicine
                tcga, geo, prostate cancer, survival, autophagy

                Comments

                Comment on this article