5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of PKR in the Inhibition of Proliferation and Translation by Polycystin-1

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Autosomal dominant polycystic kidney disease (ADPKD) is mainly caused by mutations in the PKD1 (~85%) or PKD2 (~15%) gene which, respectively, encode polycystin-1 (PC1) and polycystin-2 (PC2). How PC1 regulates cell proliferation and apoptosis has been studied for decades but the underlying mechanisms remain controversial. Protein kinase RNA-activated (PKR) is activated by interferons or double-stranded RNAs, inhibits protein translation, and induces cell apoptosis. In a previous study, we found that PC1 reduces apoptosis through suppressing the PKR/eIF2 α signaling. Whether and how PKR is involved in PC1-inhibited proliferation and protein synthesis remains unknown. Here we found that knockdown of PKR abolishes PC1-inhibited proliferation and translation. Because suppressed PKR-eIF2 α signaling/activity by PC1 would stimulate, rather than inhibit, the proliferation and translation, we examined the effect of dominant negative PKR mutant K296R that has no kinase activity and found that it enhances the inhibition of proliferation and translation by PC1. Thus, our study showed that inhibition of cell proliferation and protein synthesis by PC1 is mediated by the total expression but not the kinase activity of PKR, possibly through physical association.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease.

          Autosomal-dominant polycystic kidney disease (ADPKD) is a common genetic disorder that frequently leads to renal failure. Mutations in polycystin-1 (PC1) underlie most cases of ADPKD, but the function of PC1 has remained poorly understood. No preventive treatment for this disease is available. Here, we show that the cytoplasmic tail of PC1 interacts with tuberin, and the mTOR pathway is inappropriately activated in cyst-lining epithelial cells in human ADPKD patients and mouse models. Rapamycin, an inhibitor of mTOR, is highly effective in reducing renal cystogenesis in two independent mouse models of PKD. Treatment of human ADPKD transplant-recipient patients with rapamycin results in a significant reduction in native polycystic kidney size. These results indicate that PC1 has an important function in the regulation of the mTOR pathway and that this pathway provides a target for medical therapy of ADPKD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response.

            Type I interferon (IFN) production is a critical component of the innate defence against viral infections. Viral products induce strong type I IFN responses through the activation of Toll-like receptors (TLRs) and intracellular cytoplasmic receptors such as protein kinase R (PKR). Here we demonstrate that cells lacking TRAF3, a member of the TNF receptor-associated factor family, are defective in type I IFN responses activated by several different TLRs. Furthermore, we show that TRAF3 associates with the TLR adaptors TRIF and IRAK1, as well as downstream IRF3/7 kinases TBK1 and IKK-epsilon, suggesting that TRAF3 serves as a critical link between TLR adaptors and downstream regulatory kinases important for IRF activation. In addition to TLR stimulation, we also show that TRAF3-deficient fibroblasts are defective in their type I IFN response to direct infection with vesicular stomatitis virus, indicating that TRAF3 is also an important component of TLR-independent viral recognition pathways. Our data demonstrate that TRAF3 is a major regulator of type I IFN production and the innate antiviral response.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains.

              Characterization of the polycystic kidney disease 1 (PKD1) gene has been complicated by genomic rearrangements on chromosome 16. We have used an exon linking strategy, taking RNA from a cell line containing PKD1 but not the duplicate loci, to clone a cDNA contig of the entire transcript. The transcript consists of 14,148 bp (including a correction to the previously described C terminus), distributed among 46 exons spanning 52 kb. The predicted PKD1 protein, polycystin, is a glycoprotein with multiple transmembrane domains and a cytoplasmic C-tail. The N-terminal extracellular region of over 2,500 aa contains leucine-rich repeats, a C-type lectin, 16 immunoglobulin-like repeats and four type III fibronectin-related domains. Our results indicate that polycystin is an integral membrane protein involved in cell-cell/matrix interactions.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi
                2314-6133
                2314-6141
                2019
                23 June 2019
                : 2019
                : 5320747
                Affiliations
                1Department of Oncology, The Second Hospital, Jilin University, Changchun 130041, China
                2Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada T6G2H7
                3National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430086, China
                Author notes

                Academic Editor: Paul M. Tulkens

                Author information
                https://orcid.org/0000-0003-4036-9788
                https://orcid.org/0000-0003-4464-0598
                https://orcid.org/0000-0001-5011-9083
                https://orcid.org/0000-0003-1567-1846
                Article
                10.1155/2019/5320747
                6612395
                2ba8f559-1747-4f6b-947b-395416e3f91f
                Copyright © 2019 Yan Tang et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 February 2019
                : 19 May 2019
                : 2 June 2019
                Funding
                Funded by: Natural Sciences and Engineering Research Council of Canada
                Funded by: National Natural Science Fund, People's Republic of China
                Award ID: (# 81602448
                Categories
                Research Article

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content640

                Cited by4

                Most referenced authors764