There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
Abstract
The infection consequences of the introduced cestode fish parasite
Bothriocephalus acheilognathi were studied in a cohort of wild, young-of-the-year common carp
Cyprinus carpio that lacked co-evolution with the parasite. Within the cohort, parasite prevalence
was 42% and parasite burdens were up to 12% body weight. Pathological changes within
the intestinal tract of parasitized carp included distension of the gut wall, epithelial
compression and degeneration, pressure necrosis and varied inflammatory changes. These
were most pronounced in regions containing the largest proportion of mature proglottids.
Although the body lengths of parasitized and non-parasitized fish were not significantly
different, parasitized fish were of lower body condition and reduced weight compared
to non-parasitized conspecifics. Stable isotope analysis (δ
15N and δ
13C) revealed trophic impacts associated with infection, particularly for δ
15N where values for parasitized fish were significantly reduced as their parasite burden
increased. In a controlled aquarium environment where the fish were fed
ad libitum on an identical food source, there was no significant difference in values of δ
15N and δ
13C between parasitized and non-parasitized fish. The growth consequences remained,
however, with parasitized fish growing significantly slower than non-parasitized fish,
with their feeding rate (items s
−1) also significantly lower. Thus, infection by an introduced parasite had multiple
pathological, ecological and trophic impacts on a host with no experience of the parasite.
In the past few years the DNA sequence database for molecules of the MHC (major histocompatibility complex) has expanded greatly, yielding a more complete picture of the long-term rates and patterns of evolution of the MHC in vertebrates. Sharing of MHC allelic lineages between long-diverged species (trans-species evolution) has been detected virtually wherever it is sought, but new analyses of linked neutral regions and the complexities of sequence convergence and microrecombination in the peptide binding region challenge traditional phylogenetic analyses. Methods for estimating the intensity of selection on MHC genes suggest that viability is important, but recent studies in natural populations of mammals give inconsistent results concerning mate choice. The complex and interacting roles of microrecombination, parasite-mediated selection and mating preferences for maintaining the extraordinary levels of MHC polymorphism observed are still difficult to evaluate.
Numerous diseases have emerged as serious economic or ecological problems in aquaculture species. The combination of factors behind the emergence of each disease is unique, but various common factors are apparent. We combine risk-analysis methods and virulence theory with historical examples (mainly from salmonid production) to identify key disease-emergence risk factors. Diseases have emerged through pathogen exchange with wild populations, evolution from non-pathogenic micro-organisms and anthropogenic transfer of stocks. Aquacultural practices frequently result in high population densities and other stresses (such as intercurrent disease) which increase the risk of infection establishment and spread. As aquaculture expands and new species are farmed, diseases will continue to emerge and affect both wild and farmed fish adversely. The rate and extent of emergence can be reduced by the application of biosecurity programmes designed to mitigate the risk factors for disease emergence.
Over the past decades, various free-living animals (hosts) and their parasites have invaded recipient areas in which they had not previously occurred, thus gaining the status of aliens or exotics. In general this happened to a low extent for hundreds of years. With variable frequency, invasions have been followed by the dispersal and establishment of non-indigenous species, whether host or parasite. In the literature thus far, colonizations by both hosts and parasites have not been treated and reviewed together, although both are usually interwoven in various ways. As to those factors permitting invasive success and colonization strength, various hypotheses have been put forward depending on the scientific background of respective authors and on the conspicuousness of certain invasions. Researchers who have tried to analyse characteristic developmental patterns, the speed of dispersal or the degree of genetic divergence in populations of alien species have come to different conclusions. Among parasitologists, the applied aspects of parasite invasions, such as the negative effects on economically important hosts, have long been at the centre of interest. In this contribution, invasions by hosts as well as parasites are considered comparatively, revealing many similarities and a few differences. Two helminths, the liver fluke, Fasciola hepatica, of cattle and sheep and the swimbladder nematode, Anguillicola crassus, of eels are shown to be useful as model parasites for the study of animal invasions and environmental global change. Introductions of F. hepatica have been associated with imports of cattle or other grazing animals. In various target areas, susceptible lymnaeid snails serving as intermediate hosts were either naturally present and/or were introduced from the donor continent of the parasite (Europe) and/or from other regions which were not within the original range of the parasite, partly reflecting progressive stages of a global biota change. In several introduced areas, F. hepatica co-occurs with native or exotic populations of the congeneric F. gigantica, with thus far unknown implications. Over the fluke's extended range, in addition to domestic stock animals, wild native or naturalized mammals can also serve as final hosts. Indigenous and displaced populations of F. hepatica, however, have not yet been studied comparatively from an evolutionary perspective. A. crassus, from the Far East, has invaded three continents, without the previous naturalization of its natural host Anguilla japonica, by switching to the respective indigenous eel species. Local entomostrac crustaceans serve as susceptible intermediate hosts. The novel final hosts turned out to be naive in respect to the introduced nematode with far reaching consequences for the parasite's morphology (size), abundance and pathogenicity. Comparative infection experiments with Japanese and European eels yielded many differences in the hosts' immune defence, mirroring coevolution versus an abrupt host switch associated with the introduction of the helminth. In other associations of native hosts and invasive parasites, the elevated pathogenicity of the parasite seems to result from other deficiencies such as a lack of anti-parasitic behaviour of the naïve host compared to the donor host which displays distinct behavioural patterns, keeping the abundance of the parasite low. From the small amount of available literature, it can be concluded that the adaptation of certain populations of the novel host to the alien parasite takes several decades to a century or more. Summarizing all we know about hosts and parasites as aliens, tentative patterns and principles can be figured out, but individual case studies teach us that generalizations should be avoided.
Conceived and designed the experiments: JRB JP CW. Performed the experiments: JRB
JP CW. Analyzed the data: JRB JP CW. Contributed reagents/materials/analysis tools:
JRB JP CW. Wrote the paper: JRB CW.