52
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intestinal toxicity evaluation of TiO 2 degraded surface-treated nanoparticles: a combined physico-chemical and toxicogenomics approach in caco-2 cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Titanium dioxide (TiO 2) nanoparticles (NPs) are widely used due to their specific properties, like UV filters in sunscreen. In that particular case TiO 2 NPs are surface modified to avoid photocatalytic effects. These surface-treated nanoparticles (STNPs) spread in the environment and might release NPs as degradation residues. Indeed, degradation by the environment (exposure to UV, water and air contact …) will occur and could profoundly alter the physicochemical properties of STNPs such as chemistry, size, shape, surface structure and dispersion that are important parameters for toxicity. Although the toxicity of surface unmodified TiO 2 NPs has been documented, nothing was done about degraded TiO 2 STNPs which are the most likely to be encountered in environment. The superoxide production by aged STNPs suspensions was tested and compared to surface unmodified TiO 2 NPs. We investigated the possible toxicity of commercialized STNPs, degraded by environmental conditions, on human intestinal epithelial cells. STNPs sizes and shape were characterized and viability tests were performed on Caco-2 cells exposed to STNPs. The exposed cells were imaged with SEM and STNPs internalization was researched by TEM. Gene expression microarray analyses were performed to look for potential changes in cellular functions.

          Results

          The production of reactive oxygen species was detected with surface unmodified TiO 2 NPs but not with STNPs or their residues. Through three different toxicity assays, the STNPs tested, which have a strong tendency to aggregate in complex media, showed no toxic effect in Caco-2 cells after exposures to STNPs up to 100 μg/mL over 4 h, 24 h and 72 h. The cell morphology remained intact, attested by SEM, and internalization of STNPs was not seen by TEM. Moreover gene expression analysis using pangenomic oligomicroarrays (4x 44000 genes) did not show any change versus unexposed cells after exposure to 10 μg/ mL, which is much higher than potential environmental concentrations.

          Conclusions

          TiO 2 STNPs, degraded or not, are not harmful to Caco-2 cells and are unlikely to penetrate the body via oral route. It is likely that the strong persistence of the aluminium hydroxide layer surrounding these nanoparticles protects the cells from a direct contact with the potentially phototoxic TiO 2 core.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells.

          As the applications of industrial nanoparticles are being developed, the concerns on the environmental health are increasing. Cytotoxicities of titanium dioxide nanoparticles of different concentrations (5, 10, 20 and 40 microg/ml) were evaluated in this study using a cultured human bronchial epithelial cell line, BEAS-2B. Exposure of the cultured cells to nanoparticles led to cell death, reactive oxygen species (ROS) increase, reduced glutathione (GSH) decrease, and the induction of oxidative stress-related genes such as heme oxygenase-1, thioredoxin reductase, glutathione-S-transferase, catalase, and a hypoxia inducible gene. The ROS increase by titanium dioxide nanoparticles triggered the activation of cytosolic caspase-3 and chromatin condensation, which means that titanium dioxide nanoparticles exert cytotoxicity by an apoptotic process. Furthermore, the expressions of inflammation-related genes such as interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-8 (IL-8), TNF-a, and C-X-C motif ligand 2 (CXCL2) were also elevated. The induction of IL-8 by titanium dioxide nanoparticles was inhibited by the pre-treatment with SB203580 and PD98059, which means that the IL-8 was induced through p38 mitogen-activated protein kinase (MAPK) pathway and/or extracellular signal (ERK) pathway. Uptake of the nanoparticles into the cultured cells was observed and titanium dioxide nanoparticles seemed to penetrate into the cytoplasm and locate in the peri-region of the nucleus as aggregated particles, which may induce direct interactions between the particles and cellular molecules, to cause adverse biological responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Nanoparticles – known and unknown health risks

            Manmade nanoparticles range from the well-established multi-ton production of carbon black and fumed silica for applications in plastic fillers and car tyres to microgram quantities of fluorescent quantum dots used as markers in biological imaging. As nano-sciences are experiencing massive investment worldwide, there will be a further rise in consumer products relying on nanotechnology. While benefits of nanotechnology are widely publicised, the discussion of the potential effects of their widespread use in the consumer and industrial products are just beginning to emerge. This review provides comprehensive analysis of data available on health effects of nanomaterials.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Potential scenarios for nanomaterial release and subsequent alteration in the environment.

              The risks associated with exposure to engineered nanomaterials (ENM) will be determined in part by the processes that control their environmental fate and transformation. These processes act not only on ENM that might be released directly into the environment, but more importantly also on ENM in consumer products and those that have been released from the product. The environmental fate and transformation are likely to differ significantly for each of these cases. The ENM released from actual direct use or from nanomaterial-containing products are much more relevant for ecotoxicological studies and risk assessment than pristine ENM. Released ENM may have a greater or lesser environmental impact than the starting materials, depending on the transformation reactions and the material. Almost nothing is known about the environmental behavior and the effects of released and transformed ENM, although these are the materials that are actually present in the environment. Further research is needed to determine whether the release and transformation processes result in a similar or more diverse set of ENM and ultimately how this affects environmental behavior. This article addresses these questions, using four hypothetical case studies that cover a wide range of ENM, their direct use or product applications, and their likely fate in the environment. Furthermore, a more definitive classification scheme for ENM should be adopted that reflects their surface condition, which is a result of both industrial and environmental processes acting on the ENM. The authors conclude that it is not possible to assess the risks associated with the use of ENM by investigating only the pristine form of the ENM, without considering alterations and transformation processes. Copyright © 2011 SETAC.
                Bookmark

                Author and article information

                Contributors
                Journal
                Part Fibre Toxicol
                Part Fibre Toxicol
                Particle and Fibre Toxicology
                BioMed Central
                1743-8977
                2012
                31 May 2012
                : 9
                : 18
                Affiliations
                [1 ]CEA, IBEB, SBTN, LEPC, F-30207, Bagnols-sur-Cèze, France
                [2 ]CEREGE, UMR 6635 CNRS/Aix-Marseille Université´,ECCOREV, Europôle de l’Arbois, F-13545, Aix-en-Provence, France
                [3 ]International Consortium for the Environmental Implications of Nanotechnology (iCEINT), Aix-en-Provence, France
                [4 ]CEA, IBEB, SBTN, Laboratoire d’Etude des Protéines Cibles, F-30207, Bagnols-sur-Cèze, France
                Article
                1743-8977-9-18
                10.1186/1743-8977-9-18
                3583216
                22650444
                2b78f3e2-abd1-43b1-ad79-2219f384b00a
                Copyright ©2012 Fisichella et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 December 2011
                : 31 May 2012
                Categories
                Research

                Toxicology
                nanoparticles (nps),surface-treated nanoparticles (stnps),titanium dioxide,toxicity,degradation of nanomaterials,gene expression,life cycle

                Comments

                Comment on this article