20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effective impairment of myeloma cells and their progenitors by blockade of monocarboxylate transportation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cancer cells robustly expel lactate produced through enhanced glycolysis via monocarboxylate transporters (MCTs) and maintain alkaline intracellular pH. To develop a novel therapeutic strategy against multiple myeloma (MM), which still remains incurable, we explored the impact of perturbing a metabolism via inhibiting MCTs. All MM cells tested constitutively expressed MCT1 and MCT4, and most expressed MCT2. Lactate export was substantially suppressed to induce death along with lowering intracellular pH in MM cells by blockade of all three MCT molecules with α-cyano-4-hydroxy cinnamate (CHC) or the MCT1 and MCT2 inhibitor AR-C155858 in combination with MCT4 knockdown, although only partially by knockdown of each MCT. CHC lowered intracellular pH and severely curtailed lactate secretion even when combined with metformin, which further lowered intracellular pH and enhanced cytotoxicity. Interestingly, an ambient acidic pH markedly enhanced CHC-mediated cytotoxicity, suggesting preferential targeting of MM cells in acidic MM bone lesions. Furthermore, treatment with CHC suppressed hexokinase II expression and ATP production to reduce side populations and colony formation. Finally, CHC caused downregulation of homing receptor CXCR4 and abrogated SDF-1-induced migration. Targeting tumor metabolism by MCT blockade therefore may become an effective therapeutic option for drug-resistant MM cells with elevated glycolysis.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Acidic extracellular microenvironment and cancer

          Acidic extracellular pH is a major feature of tumor tissue, extracellular acidification being primarily considered to be due to lactate secretion from anaerobic glycolysis. Clinicopathological evidence shows that transporters and pumps contribute to H+ secretion, such as the Na+/H+ exchanger, the H+-lactate co-transporter, monocarboxylate transporters, and the proton pump (H+-ATPase); these may also be associated with tumor metastasis. An acidic extracellular pH not only activates secreted lysosomal enzymes that have an optimal pH in the acidic range, but induces the expression of certain genes of pro-metastatic factors through an intracellular signaling cascade that is different from hypoxia. In addition to lactate, CO2 from the pentose phosphate pathway is an alternative source of acidity, showing that hypoxia and extracellular acidity are, while being independent from each other, deeply associated with the cellular microenvironment. In this article, the importance of an acidic extracellular pH as a microenvironmental factor participating in tumor progression is reviewed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CXCL12 / CXCR4 / CXCR7 chemokine axis and cancer progression.

            Chemokines, small pro-inflammatory chemoattractant cytokines that bind to specific G-protein-coupled seven-span transmembrane receptors, are major regulators of cell trafficking and adhesion. The chemokine CXCL12 (also called stromal-derived factor-1) is an important α-chemokine that binds primarily to its cognate receptor CXCR4 and thus regulates the trafficking of normal and malignant cells. For many years, it was believed that CXCR4 was the only receptor for CXCL12. Yet, recent work has demonstrated that CXCL12 also binds to another seven-transmembrane span receptor called CXCR7. Our group and others have established critical roles for CXCR4 and CXCR7 on mediating tumor metastasis in several types of cancers, in addition to their contributions as biomarkers of tumor behavior as well as potential therapeutic targets. Here, we review the current concepts regarding the role of CXCL12 / CXCR4 / CXCR7 axis activation, which regulates the pattern of tumor growth and metastatic spread to organs expressing high levels of CXCL12 to develop secondary tumors. We also summarize recent therapeutic approaches to target these receptors and/or their ligands.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The monocarboxylate transporter family--Structure and functional characterization.

              Monocarboxylate transporters (MCTs) catalyze the proton-linked transport of monocarboxylates such as L-lactate, pyruvate, and the ketone bodies across the plasma membrane. There are four isoforms, MCTs 1-4, which are known to perform this function in mammals, each with distinct substrate and inhibitor affinities. They are part of the larger SLC16 family of solute carriers, also known as the MCT family, which has 14 members in total, all sharing conserved sequence motifs. The family includes a high-affinity thyroid hormone transporter (MCT8), an aromatic amino acid transporter (T-type amino acid transporter 1/MCT10), and eight orphan members yet to be characterized. MCTs were predicted to have 12 transmembrane helices (TMs) with intracellular C- and N-termini and a large intracellular loop between TMs 6 and 7, and this was confirmed by labeling studies and proteolytic digestion. Site-directed mutagenesis has identified key residues required for catalysis and inhibitor binding and enabled the development of a molecular model of MCT1 in both inward and outward facing conformations. This suggests a likely mechanism for the translocation cycle. Although MCT family members are not themselves glycosylated, MCTs1-4 require association with a glycosylated ancillary protein, either basigin or embigin, for their correct translocation to the plasma membrane. These ancillary proteins have a single transmembrane domain and two to three extracellular immunoglobulin domains. They must remain closely associated with MCTs1-4 to maintain transporter activity. MCT1, MCT3, and MCT4 bind preferentially to basigin and MCT2 to embigin. The choice of binding partner does not affect substrate specificity or kinetics but can influence inhibitor specificity. Copyright © 2011 Wiley Periodicals, Inc.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                20 October 2015
                10 September 2015
                : 6
                : 32
                : 33568-33586
                Affiliations
                1 Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
                2 Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
                3 Department of Biomaterials and Bioengineering, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
                4 Division of Bio-imaging, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
                5 Department of Histology and Oral Histology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
                6 Division of Transfusion Medicine and Cell Therapy, Tokushima University Hospital, Tokushima, Japan
                Author notes
                Correspondence to: Masahiro Abe, masabe@ 123456tokushima-u.ac.jp
                Article
                10.18632/oncotarget.5598
                4741786
                26384349
                2b4bd32e-9f99-4d8d-bd9c-39e7bf567659
                Copyright: © 2015 Hanson et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 23 February 2015
                : 26 August 2015
                Categories
                Research Paper

                Oncology & Radiotherapy
                multiple myeloma,monocarboxylate transporter,lactate,metabolism
                Oncology & Radiotherapy
                multiple myeloma, monocarboxylate transporter, lactate, metabolism

                Comments

                Comment on this article