13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Targeting metabolic activity in high-risk neuroblastoma through Monocarboxylate Transporter 1 (MCT1) inhibition

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Amplification of the MYCN oncogene occurs in approximately 25% of primary neuroblastomas and is the single most powerful biological marker of poor prognosis in this disease. MYCN transcriptionally regulates a range of biological processes important for cancer, including cell metabolism. The MYCN-regulated metabolic gene SLC16A1 , encoding the lactate transporter monocarboxylate transporter 1 (MCT1), is a potential therapeutic target. Treatment of neuroblastoma cells with the MCT1 inhibitor SR13800 increased intracellular lactate levels, disrupted the nicotinamide adenine dinucleotide (NADH/NAD + ) ratio and decreased intracellular glutathione levels. Metabolite tracing with 13C-glucose and 13C-glutamine following MCT1 inhibitor treatment revealed increased quantities of tricarboxylic acid (TCA) cycle intermediates and increased oxygen consumption rate. MCT1 inhibition was highly synergistic with vincristine under cell culture conditions, but this combination was ineffective against neuroblastoma xenografts in mice. Post-treatment xenograft tumors had increased expression of the MCT1 homolog MCT4/ SLC16A , a known resistance factor to MCT1 inhibition. We found that MCT4 was negatively regulated by MYCN in luciferase reporter assays and its expression in neuroblastoma cells was increased under hypoxic conditions and following hypoxia-inducible factor (HIF1) induction, suggesting that MCT4 may contribute to resistance to MCT1 inhibitor treatment in hypoxic neuroblastoma tumors. Co-treatment of neuroblastoma cells with inhibitors of MCT1 and LDHA, the enzyme responsible for lactate production, resulted in a large increase in intracellular pyruvate and was highly synergistic in decreasing neuroblastoma cell viability. These results highlight the potential of targeting MCT1 in neuroblastoma in conjunction with strategies that involve disruption of pyruvate homeostasis and indicate possible resistance mechanisms.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report.

          Because current approaches to risk classification and treatment stratification for children with neuroblastoma (NB) vary greatly throughout the world, it is difficult to directly compare risk-based clinical trials. The International Neuroblastoma Risk Group (INRG) classification system was developed to establish a consensus approach for pretreatment risk stratification. The statistical and clinical significance of 13 potential prognostic factors were analyzed in a cohort of 8,800 children diagnosed with NB between 1990 and 2002 from North America and Australia (Children's Oncology Group), Europe (International Society of Pediatric Oncology Europe Neuroblastoma Group and German Pediatric Oncology and Hematology Group), and Japan. Survival tree regression analyses using event-free survival (EFS) as the primary end point were performed to test the prognostic significance of the 13 factors. Stage, age, histologic category, grade of tumor differentiation, the status of the MYCN oncogene, chromosome 11q status, and DNA ploidy were the most highly statistically significant and clinically relevant factors. A new staging system (INRG Staging System) based on clinical criteria and tumor imaging was developed for the INRG Classification System. The optimal age cutoff was determined to be between 15 and 19 months, and 18 months was selected for the classification system. Sixteen pretreatment groups were defined on the basis of clinical criteria and statistically significantly different EFS of the cohort stratified by the INRG criteria. Patients with 5-year EFS more than 85%, more than 75% to or = 50% to < or = 75%, or less than 50% were classified as very low risk, low risk, intermediate risk, or high risk, respectively. By defining homogenous pretreatment patient cohorts, the INRG classification system will greatly facilitate the comparison of risk-based clinical trials conducted in different regions of the world and the development of international collaborative studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lactate Metabolism in Human Lung Tumors

            Cancer cells consume glucose and secrete lactate in culture. It is unknown whether lactate contributes to energy metabolism in living tumors. We previously reported that human non-small cell lung cancers (NSCLC) oxidize glucose in the tricarboxylic acid (TCA) cycle. Here we show that lactate is also a TCA cycle carbon source for NSCLC. In human NSCLC, evidence of lactate utilization was most apparent in tumors with high 18 fluorodeoxyglucose uptake and aggressive oncological behavior. Infusing human NSCLC patients with 13 C-lactate revealed extensive labeling of TCA cycle metabolites. In mice, deleting monocarboxylate transporter-1 (MCT1) from tumor cells eliminated lactate-dependent metabolite labeling, confirming tumor-cell autonomous lactate uptake. Strikingly, directly comparing lactate and glucose metabolism in vivo indicated that lactate's contribution to the TCA cycle predominates. The data indicate that tumors, including bona fide human NSCLC, can use lactate as a fuel in vivo. Human non-small cell lung cancer preferentially utilizes lactate over glucose to fuel TCA cycle and sustain tumor metabolism in vivo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism.

              The monocarboxylate transporter MCT4 mediates lactic acid efflux from most tissues that are dependent on glycolysis for their ATP production. Here we demonstrate that expression of MCT4 mRNA and protein was increased >3-fold by a 48-h exposure to 1% O(2), whereas MCT1 expression was not increased. The effect was mimicked by CoCl(2) (50 microm), suggesting transcriptional regulation by hypoxia-inducible factor 1alpha (HIF-1alpha). The predicted promoters for human MCT1, MCT2, and MCT4 were cloned into the pGL3 vector and shown to be active (luciferase luminescence) under basal conditions. Only the MCT4 promoter was activated (>2-fold) by hypoxia. No response was found in cells lacking HIF-1alpha. Four potential hypoxia-response elements were identified, but deletion analysis implicated only two in the hypoxia response. These were just upstream from the transcription start site and also found in the mouse MCT4 promoter. Mutation of site 2 totally abolished the hypoxic response, whereas mutation of site 1 only reduced the response. Gel-shift analysis demonstrated that nuclear extracts of hypoxic but not normoxic HeLa cells contained two transcription factors that bound to DNA probes containing these hypoxia-response elements. The major shifted band was abolished by mutation of site 2, and supershift analysis confirmed that HIF-1alpha bound to this site. Binding of the second factor was abolished by mutation of site 1. We conclude that MCT4, like other glycolytic enzymes, is up-regulated by hypoxia through a HIF-1alpha-mediated mechanism. This adaptive response allows the increased lactic acid produced during hypoxia to be rapidly lost from the cell.
                Bookmark

                Author and article information

                Journal
                Oncogene
                Oncogene
                Springer Science and Business Media LLC
                0950-9232
                1476-5594
                March 2 2020
                Article
                10.1038/s41388-020-1235-2
                7970707
                32123312
                6a9b35b0-5560-44ae-8321-530095ebaf6d
                © 2020

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article