27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Tissue inhibitor of metalloproteinases-3 (TIMP-3) is a binding partner of epithelial growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1). Implications for macular degenerations.

      The Journal of Biological Chemistry
      Animals, Cell Line, DNA, Complementary, metabolism, Extracellular Matrix Proteins, chemistry, Genetic Vectors, Glutathione Transferase, Humans, Immunoblotting, Immunohistochemistry, Macular Degeneration, genetics, Models, Genetic, Mutation, Missense, Pigment Epithelium of Eye, Precipitin Tests, Protein Binding, Retina, Swine, Tissue Inhibitor of Metalloproteinase-3, physiology, Transfection, Two-Hybrid System Techniques

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tissue inhibitor of metalloproteinases-3 (TIMP-3) is a matrix-bound inhibitor of matrix metalloproteinases. Mutations in the Timp-3 gene cause Sorsby fundus dystrophy (SFD), a hereditary macular degenerative disease. The pathogenic mechanisms responsible for the disease phenotype are unknown. In an in vivo quest for binding partners of the TIMP-3 protein in the subretina, we identified epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1, also known as fibulin 3) as a strong interacting protein. The COOH-terminal end of TIMP-3 was involved in the interaction. Interestingly, a missense mutation in EFEMP1 is responsible for another hereditary macular degenerative disease, Malattia Leventinese (ML). Both SFD and ML have strong similarities to age-related macular degeneration (AMD), a major cause of blindness in the elderly population of the Western hemisphere. Our results were supported by significant accumulation and expression overlap of both TIMP-3 and EFEMP1 between the retinal pigment epithelia and Bruch membrane in the eyes of ML and AMD patients. These results provide the first link between two different macular degenerative disease genes and imply the possibility of a common pathogenic mechanism behind different forms of macular degeneration.

          Related collections

          Author and article information

          Comments

          Comment on this article