2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Efficacy of an exoskeleton-based physical therapy program for non-ambulatory patients during subacute stroke rehabilitation: a randomized controlled trial

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Individuals requiring greater physical assistance to practice walking complete fewer steps in physical therapy during subacute stroke rehabilitation. Powered exoskeletons have been developed to allow repetitious overground gait training for individuals with lower limb weakness. The objective of this study was to determine the efficacy of exoskeleton-based physical therapy training during subacute rehabilitation for walking recovery in non-ambulatory patients with stroke.

          Methods

          An assessor-blinded randomized controlled trial was conducted at 3 inpatient rehabilitation hospitals. Patients with subacute stroke (< 3 months) who were unable to walk without substantial assistance (Functional Ambulation Category rating of 0 or 1) were randomly assigned to receive exoskeleton-based or standard physical therapy during rehabilitation, until discharge or a maximum of 8 weeks. The experimental protocol replaced 75% of standard physical therapy sessions with individualized exoskeleton-based sessions to increase standing and stepping repetition, with the possibility of weaning off the device. The primary outcome was walking ability, measured using the Functional Ambulation Category. Secondary outcomes were gait speed, distance walked on the 6-Minute Walk Test, days to achieve unassisted gait, lower extremity motor function (Fugl-Meyer Assessment), Berg Balance Scale, Patient Health Questionnaire, Montreal Cognitive Assessment, and 36-Item Short Form Survey, measured post-intervention and after 6 months.

          Results

          Thirty-six patients with stroke (mean 39 days post-stroke) were randomized (Exoskeleton = 19, Usual Care = 17). On intention-to-treat analysis, no significant between-group differences were found in the primary or secondary outcomes at post-intervention or after 6 months. Five participants randomized to the Exoskeleton group did not receive the protocol as planned and thus exploratory as-treated and per-protocol analyses were undertaken. The as-treated analysis found that those adhering to exoskeleton-based physical therapy regained independent walking earlier (p = 0.03) and had greater gait speed (p = 0.04) and 6MWT (p = 0.03) at 6 months; however, these differences were not significant in the per-protocol analysis. No serious adverse events were reported.

          Conclusions

          This study found that exoskeleton-based physical therapy does not result in greater improvements in walking independence than standard care but can be safely administered at no detriment to patient outcomes.

          Clinical Trial Registration The Exoskeleton for post-Stroke Recovery of Ambulation (ExStRA) trial was registered at ClinicalTrials.gov (NCT02995265, first registered: December 16, 2016)

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          The PHQ-9: validity of a brief depression severity measure.

          While considerable attention has focused on improving the detection of depression, assessment of severity is also important in guiding treatment decisions. Therefore, we examined the validity of a brief, new measure of depression severity. The Patient Health Questionnaire (PHQ) is a self-administered version of the PRIME-MD diagnostic instrument for common mental disorders. The PHQ-9 is the depression module, which scores each of the 9 DSM-IV criteria as "0" (not at all) to "3" (nearly every day). The PHQ-9 was completed by 6,000 patients in 8 primary care clinics and 7 obstetrics-gynecology clinics. Construct validity was assessed using the 20-item Short-Form General Health Survey, self-reported sick days and clinic visits, and symptom-related difficulty. Criterion validity was assessed against an independent structured mental health professional (MHP) interview in a sample of 580 patients. As PHQ-9 depression severity increased, there was a substantial decrease in functional status on all 6 SF-20 subscales. Also, symptom-related difficulty, sick days, and health care utilization increased. Using the MHP reinterview as the criterion standard, a PHQ-9 score > or =10 had a sensitivity of 88% and a specificity of 88% for major depression. PHQ-9 scores of 5, 10, 15, and 20 represented mild, moderate, moderately severe, and severe depression, respectively. Results were similar in the primary care and obstetrics-gynecology samples. In addition to making criteria-based diagnoses of depressive disorders, the PHQ-9 is also a reliable and valid measure of depression severity. These characteristics plus its brevity make the PHQ-9 a useful clinical and research tool.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment.

            To develop a 10-minute cognitive screening tool (Montreal Cognitive Assessment, MoCA) to assist first-line physicians in detection of mild cognitive impairment (MCI), a clinical state that often progresses to dementia. Validation study. A community clinic and an academic center. Ninety-four patients meeting MCI clinical criteria supported by psychometric measures, 93 patients with mild Alzheimer's disease (AD) (Mini-Mental State Examination (MMSE) score > or =17), and 90 healthy elderly controls (NC). The MoCA and MMSE were administered to all participants, and sensitivity and specificity of both measures were assessed for detection of MCI and mild AD. Using a cutoff score 26, the MMSE had a sensitivity of 18% to detect MCI, whereas the MoCA detected 90% of MCI subjects. In the mild AD group, the MMSE had a sensitivity of 78%, whereas the MoCA detected 100%. Specificity was excellent for both MMSE and MoCA (100% and 87%, respectively). MCI as an entity is evolving and somewhat controversial. The MoCA is a brief cognitive screening tool with high sensitivity and specificity for detecting MCI as currently conceptualized in patients performing in the normal range on the MMSE.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Better reporting of interventions: template for intervention description and replication (TIDieR) checklist and guide

              Without a complete published description of interventions, clinicians and patients cannot reliably implement interventions that are shown to be useful, and other researchers cannot replicate or build on research findings. The quality of description of interventions in publications, however, is remarkably poor. To improve the completeness of reporting, and ultimately the replicability, of interventions, an international group of experts and stakeholders developed the Template for Intervention Description and Replication (TIDieR) checklist and guide. The process involved a literature review for relevant checklists and research, a Delphi survey of an international panel of experts to guide item selection, and a face to face panel meeting. The resultant 12 item TIDieR checklist (brief name, why, what (materials), what (procedure), who provided, how, where, when and how much, tailoring, modifications, how well (planned), how well (actual)) is an extension of the CONSORT 2010 statement (item 5) and the SPIRIT 2013 statement (item 11). While the emphasis of the checklist is on trials, the guidance is intended to apply across all evaluative study designs. This paper presents the TIDieR checklist and guide, with an explanation and elaboration for each item, and examples of good reporting. The TIDieR checklist and guide should improve the reporting of interventions and make it easier for authors to structure accounts of their interventions, reviewers and editors to assess the descriptions, and readers to use the information.
                Bookmark

                Author and article information

                Contributors
                janice.eng@ubc.ca
                Journal
                J Neuroeng Rehabil
                J Neuroeng Rehabil
                Journal of NeuroEngineering and Rehabilitation
                BioMed Central (London )
                1743-0003
                10 October 2021
                10 October 2021
                2021
                : 18
                : 149
                Affiliations
                [1 ]GRID grid.17091.3e, ISNI 0000 0001 2288 9830, Department of Physical Therapy, , University of British Columbia, ; 212-2177 Wesbrook Mall, Vancouver, BC V6T 1Z3 Canada
                [2 ]GRID grid.417243.7, ISNI 0000 0004 0384 4428, Rehabilitation Research Program, , Vancouver Coastal Health Research Institute, ; Vancouver, BC Canada
                [3 ]GRID grid.17091.3e, ISNI 0000 0001 2288 9830, Department of Occupational Science and Occupational Therapy, , University of British Columbia, ; Vancouver, BC Canada
                [4 ]GRID grid.413574.0, ISNI 0000 0001 0693 8815, Glenrose Rehabilitation Hospital, , Alberta Health Services, ; Edmonton, AB Canada
                [5 ]GRID grid.416448.b, ISNI 0000 0000 9674 4717, Parkwood Institute, , St. Joseph’s Health Care, ; London, ON Canada
                [6 ]GRID grid.39381.30, ISNI 0000 0004 1936 8884, Department of Physical Medicine and Rehabilitation, Schulich School of Medicine and Dentistry, , Western University, ; London, ON Canada
                [7 ]GRID grid.498786.c, ISNI 0000 0001 0505 0734, GF Strong Rehabilitation Centre, , Vancouver Coastal Health, ; Vancouver, BC Canada
                [8 ]GRID grid.17091.3e, ISNI 0000 0001 2288 9830, Division of Physical Medicine and Rehabilitation, Faculty of Medicine, , University of British Columbia, ; Vancouver, BC Canada
                Author information
                http://orcid.org/0000-0002-2093-0788
                Article
                942
                10.1186/s12984-021-00942-z
                8502504
                34629104
                2aee408c-91a4-41c0-b6b0-276ed9e3a347
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 16 June 2021
                : 27 September 2021
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100004411, heart and stroke foundation of canada;
                Award ID: G-15-0009030
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100000024, canadian institutes of health research;
                Award ID: FDN 143340
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2021

                Neurosciences
                stroke,rehabilitation,walking,exoskeleton,physical therapy techniques,clinical trial
                Neurosciences
                stroke, rehabilitation, walking, exoskeleton, physical therapy techniques, clinical trial

                Comments

                Comment on this article