13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Synucleins: New Data on Misfolding, Aggregation and Role in Diseases

      ,
      Biomedicines
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The synucleins are a family of natively unfolded (or intrinsically unstructured) proteins consisting of α-, β-, and γ-synuclein involved in neurodegenerative diseases and cancer. The current number of publications on synucleins has exceeded 16.000. They remain the subject of constant interest for over 35 years. Two reasons explain this unchanging attention: synuclein’s association with several severe human diseases and the lack of understanding of the functional roles under normal physiological conditions. We analyzed recent publications to look at the main trends and developments in synuclein research and discuss possible future directions. Traditional areas of peak research interest which still remain high among last year’s publications are comparative studies of structural features as well as functional research on of three members of the synuclein family. Another popular research topic in the area is a mechanism of α-synuclein accumulation, aggregation, and fibrillation. Exciting fast-growing area of recent research is α-synuclein and epigenetics. We do not present here a broad and comprehensive review of all directions of studies but summarize only the most significant recent findings relevant to these topics and outline potential future directions.

          Related collections

          Most cited references96

          • Record: found
          • Abstract: found
          • Article: not found

          Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro.

          Presynaptic nerve terminals release neurotransmitters repeatedly, often at high frequency, and in relative isolation from neuronal cell bodies. Repeated release requires cycles of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-complex assembly and disassembly, with continuous generation of reactive SNARE-protein intermediates. Although many forms of neurodegeneration initiate presynaptically, only few pathogenic mechanisms are known, and the functions of presynaptic proteins linked to neurodegeneration, such as α-synuclein, remain unclear. Here, we show that maintenance of continuous presynaptic SNARE-complex assembly required a nonclassical chaperone activity mediated by synucleins. Specifically, α-synuclein directly bound to the SNARE-protein synaptobrevin-2/vesicle-associated membrane protein 2 (VAMP2) and promoted SNARE-complex assembly. Moreover, triple-knockout mice lacking synucleins developed age-dependent neurological impairments, exhibited decreased SNARE-complex assembly, and died prematurely. Thus, synucleins may function to sustain normal SNARE-complex assembly in a presynaptic terminal during aging.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The many faces of α-synuclein: from structure and toxicity to therapeutic target.

            Disorders characterized by α-synuclein (α-syn) accumulation, Lewy body formation and parkinsonism (and in some cases dementia) are collectively known as Lewy body diseases. The molecular mechanism (or mechanisms) through which α-syn abnormally accumulates and contributes to neurodegeneration in these disorders remains unknown. Here, we provide an overview of current knowledge and prevailing hypotheses regarding the conformational, oligomerization and aggregation states of α-syn and their role in regulating α-syn function in health and disease. Understanding the nature of the various α-syn structures, how they are formed and their relative contributions to α-syn-mediated toxicity may inform future studies aiming to develop therapeutic prevention and intervention.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biomarkers for neurodegenerative diseases

              Biomarkers for neurodegenerative diseases are needed to improve the diagnostic workup in the clinic but also to facilitate the development and monitoring of effective disease-modifying therapies. Positron emission tomography methods detecting amyloid-β and tau pathology in Alzheimer's disease have been increasingly used to improve the design of clinical trials and observational studies. In recent years, easily accessible and cost-effective blood-based biomarkers detecting the same Alzheimer's disease pathologies have been developed, which might revolutionize the diagnostic workup of Alzheimer's disease globally. Relevant biomarkers for α-synuclein pathology in Parkinson's disease are also emerging, as well as blood-based markers of general neurodegeneration and glial activation. This review presents an overview of the latest advances in the field of biomarkers for neurodegenerative diseases. Future directions are discussed regarding implementation of novel biomarkers in clinical practice and trials.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                BIOMID
                Biomedicines
                Biomedicines
                MDPI AG
                2227-9059
                December 2022
                December 13 2022
                : 10
                : 12
                : 3241
                Article
                10.3390/biomedicines10123241
                36551997
                2a5aaa8d-8760-42e1-b8e7-ec36d0dcc9b7
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article