12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      α-Synuclein and Mechanisms of Epigenetic Regulation

      Brain Sciences
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Synucleinopathies are a group of neurodegenerative diseases with common pathological lesions associated with the excessive accumulation and abnormal intracellular deposition of toxic species of α-synuclein. The shared clinical features are chronic progressive decline of motor, cognitive, and behavioral functions. These disorders include Parkinson’s disease, dementia with Lewy body, and multiple system atrophy. Vigorous research in the mechanisms of pathology of these illnesses is currently under way to find disease-modifying treatment and molecular markers for early diagnosis. α-Synuclein is a prone-to-aggregate, small amyloidogenic protein with multiple roles in synaptic vesicle trafficking, neurotransmitter release, and intracellular signaling events. Its expression is controlled by several mechanisms, one of which is epigenetic regulation. When transmitted to the nucleus, α-synuclein binds to DNA and histones and participates in epigenetic regulatory functions controlling specific gene transcription. Here, we discuss the various aspects of α-synuclein involvement in epigenetic regulation in health and diseases.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: not found
          • Article: not found

          Canalization of Development and the Inheritance of Acquired Characters

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Histone acetylation: molecular mnemonics on the chromatin.

            Long-lasting memories require specific gene expression programmes that are, in part, orchestrated by epigenetic mechanisms. Of the epigenetic modifications identified in cognitive processes, histone acetylation has spurred considerable interest. Whereas increments in histone acetylation have consistently been shown to favour learning and memory, a lack thereof has been causally implicated in cognitive impairments in neurodevelopmental disorders, neurodegeneration and ageing. As histone acetylation and cognitive functions can be pharmacologically restored by histone deacetylase inhibitors, this epigenetic modification might constitute a molecular memory aid on the chromatin and, by extension, a new template for therapeutic interventions against cognitive frailty.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Alpha-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity.

              Alpha-synuclein is a neuronal protein implicated genetically in Parkinson's disease. alpha-synuclein localizes to the nucleus and presynaptic nerve terminals. Here we show that alpha-synuclein mediates neurotoxicity in the nucleus. Targeting of alpha-synuclein to the nucleus promotes toxicity, whereas cytoplasmic sequestration is protective in both cell culture and transgenic Drosophila. Toxicity of alpha-synuclein can be rescued by administration of histone deacetylase inhibitors in both cell culture and transgenic flies. Alpha-synuclein binds directly to histones, reduces the level of acetylated histone H3 in cultured cells and inhibits acetylation in histone acetyltransferase assays. Alpha-synuclein mutations that cause familial Parkinson's disease, A30P and A53T, exhibit increased nuclear targeting in cell culture. These findings implicate nuclear alpha-synuclein in promoting nigrostriatal degeneration in Parkinson's disease and encourage exploration of histone deacetylase inhibitors as potential therapies for the disorder.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                BSRCCS
                Brain Sciences
                Brain Sciences
                MDPI AG
                2076-3425
                January 2023
                January 15 2023
                : 13
                : 1
                : 150
                Article
                10.3390/brainsci13010150
                837094b8-a833-4f2e-a93c-37e80cd9acbf
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article