5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Textural and Functional Properties of Skimmed and Whole Milk Fermented by Novel Lactiplantibacillus plantarum AG10 Strain Isolated from Silage

      , , , , ,
      Fermentation
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Milk fermentation by lactic acid bacteria both enhances its nutritional value and provides probiotic strains to correct the intestinal microflora. Here, we show the comparative analysis of milk fermented with the new strain, Lactiplantibacillus plantarum AG10, isolated from silage and the industrial strain Lactobacillus delbrukii subs. bulgaricus. While the milk acidification during fermentation with L. plantarum AG10 was lower compared with L. bulgaricus, milk fermented with L. plantarum AG10 after a 14-day storage period retained a high level of viable cells and was characterized by an increased content of exopolysaccharides and higher viscosity. The increased EPS production led to clot formation with higher density on microphotographs and increased firmness and cohesiveness of the product compared with L. bulgaricus-fermented milk. Furthermore, the L. plantarum AG10-fermented milk exhibited increased radical-scavenging activity assuming lower fat oxidation during storage. Taken together, these data suggest that L. plantarum AG10 seems to be a promising starter culture for dairy products with lowered levels of lactic acid, which is important for people with increased gastric acid formation.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Use of a free radical method to evaluate antioxidant activity

          LWT - Food Science and Technology, 28(1), 25-30
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            How to optimize the drop plate method for enumerating bacteria.

            The drop plate (DP) method can be used to determine the number of viable suspended bacteria in a known beaker volume. The drop plate method has some advantages over the spread plate (SP) method. Less time and effort are required to dispense the drops onto an agar plate than to spread an equivalent total sample volume into the agar. By distributing the sample in drops, colony counting can be done faster and perhaps more accurately. Even though it has been present in the laboratory for many years, the drop plate method has not been standardized. Some technicians use 10-fold dilutions, others use twofold. Some technicians plate a total volume of 0.1 ml, others plate 0.2 ml. The optimal combination of such factors would be useful to know when performing the drop plate method. This investigation was conducted to determine (i) the standard deviation of the bacterial density estimate, (ii) the cost of performing the drop plate procedure, (iii) the optimal drop plate design, and (iv) the advantages of the drop plate method in comparison to the standard spread plate method. The optimal design is the combination of factor settings that achieves the smallest standard deviation for a fixed cost. Computer simulation techniques and regression analysis were used to express the standard deviation as a function of the beaker volume, dilution factor, and volume plated. The standard deviation expression is also applicable to the spread plate method.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests.

              The present study aims to evaluate the probiotic potential of lactic acid bacteria (LAB) isolated from naturally fermented olives and select candidates to be used as probiotic starters for the improvement of the traditional fermentation process and the production of newly added value functional foods. Seventy one (71) lactic acid bacterial strains (17 Leuconostoc mesenteroides, 1 Ln. pseudomesenteroides, 13 Lactobacillus plantarum, 37 Lb. pentosus, 1 Lb. paraplantarum, and 2 Lb. paracasei subsp. paracasei) isolated from table olives were screened for their probiotic potential. Lb. rhamnosus GG and Lb. casei Shirota were used as reference strains. The in vitro tests included survival in simulated gastrointestinal tract conditions, antimicrobial activity (against Listeria monocytogenes, Salmonella Enteritidis, Escherichia coli O157:H7), Caco-2 surface adhesion, resistance to 9 antibiotics and haemolytic activity. Three (3) Lb. pentosus, 4 Lb. plantarum and 2 Lb. paracasei subsp. paracasei strains demonstrated the highest final population (>8 log cfu/ml) after 3 h of exposure at low pH. The majority of the tested strains were resistant to bile salts even after 4 h of exposure, while 5 Lb. plantarum and 7 Lb. pentosus strains exhibited partial bile salt hydrolase activity. None of the strains inhibited the growth of the pathogens tested. Variable efficiency to adhere to Caco-2 cells was observed. This was the same regarding strains' susceptibility towards different antibiotics. None of the strains exhibited β-haemolytic activity. As a whole, 4 strains of Lb. pentosus, 3 strains of Lb. plantarum and 2 strains of Lb. paracasei subsp. paracasei were found to possess desirable in vitro probiotic properties similar to or even better than the reference probiotic strains Lb. casei Shirota and Lb. rhamnosus GG. These strains are good candidates for further investigation both with in vivo studies to elucidate their potential health benefits and in olive fermentation processes to assess their technological performance as novel probiotic starters. Copyright © 2012 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                FERMC4
                Fermentation
                Fermentation
                MDPI AG
                2311-5637
                June 2022
                June 20 2022
                : 8
                : 6
                : 290
                Article
                10.3390/fermentation8060290
                295056a0-fbde-4fd3-beaf-4d1531c7a3b1
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article