3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Influence of nut structure and processing on lipid bioaccessibility and absorption

      , ,
      Current Opinion in Food Science
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Health Benefits of Nut Consumption

          Emilio Ros (2010)
          Nuts (tree nuts and peanuts) are nutrient dense foods with complex matrices rich in unsaturated fatty and other bioactive compounds: high-quality vegetable protein, fiber, minerals, tocopherols, phytosterols, and phenolic compounds. By virtue of their unique composition, nuts are likely to beneficially impact health outcomes. Epidemiologic studies have associated nut consumption with a reduced incidence of coronary heart disease and gallstones in both genders and diabetes in women. Limited evidence also suggests beneficial effects on hypertension, cancer, and inflammation. Interventional studies consistently show that nut intake has a cholesterol-lowering effect, even in the context of healthy diets, and there is emerging evidence of beneficial effects on oxidative stress, inflammation, and vascular reactivity. Blood pressure, visceral adiposity and the metabolic syndrome also appear to be positively influenced by nut consumption. Thus it is clear that nuts have a beneficial impact on many cardiovascular risk factors. Contrary to expectations, epidemiologic studies and clinical trials suggest that regular nut consumption is unlikely to contribute to obesity and may even help in weight loss. Safety concerns are limited to the infrequent occurrence of nut allergy in children. In conclusion, nuts are nutrient rich foods with wide-ranging cardiovascular and metabolic benefits, which can be readily incorporated into healthy diets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of cell walls in the bioaccessibility of lipids in almond seeds.

            Certain nutrients and phytochemicals in almonds may confer protection against cardiovascular disease, but little is known about factors that influence their bioavailability. A crucial and relevant aspect is the amount of these dietary components available for absorption in the intestine, which is a concept referred to as bioaccessibility. We investigated the role played by cell walls in influencing the bioaccessibility of intracellular lipid from almond seeds. Quantitative analyses of nonstarch polysaccharides (NSPs) and phenolic compounds of cell walls were performed by gas-liquid chromatography and HPLC, respectively. In a series of experiments, the effects of mechanical disruption, chewing, and digestion on almond seed microstructure and intracellular lipid release were determined. In the digestibility study, fecal samples were collected from healthy subjects who had consumed diets with or without almonds. Almond seeds and fecal samples were examined by microscopy to identify cell walls and intracellular lipid. Cell walls were found to be rich in NSPs, particularly arabinose-rich polysaccharides, with a high concentration of phenolic compounds detected in the seed coat cell wall. During disruption of almond tissue by mechanical methods or chewing, only the first layer of cells at the fractured surface was ruptured and able to release lipid. In fecal samples collected from subjects consuming the almond diet, we observed intact cotyledonary cells, in which the cell walls encapsulated intracellular lipid. This lipid appeared susceptible to colonic fermentation once the cotyledonary cell walls were breached by bacterial degradation. The cell walls of almond seeds reduce lipid bioaccessibility by hindering the release of lipid available for digestion.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Fermentation of plant-based milk alternatives for improved flavour and nutritional value

              Non-dairy milk alternatives (or milk analogues) are water extracts of plants and have become increasingly popular for human nutrition. Over the years, the global market for these products has become a multi-billion dollar business and will reach a value of approximately 26 billion USD within the next 5 years. Moreover, many consumers demand plant-based milk alternatives for sustainability, health-related, lifestyle and dietary reasons, resulting in an abundance of products based on nuts, seeds or beans. Unfortunately, plant-based milk alternatives are often nutritionally unbalanced, and their flavour profiles limit their acceptance. With the goal of producing more valuable and tasty products, fermentation can help to the improve sensory profiles, nutritional properties, texture and microbial safety of plant-based milk alternatives so that the amendment with additional ingredients, often perceived as artificial, can be avoided. To date, plant-based milk fermentation mainly uses mono-cultures of microbes, such as lactic acid bacteria, bacilli and yeasts, for this purpose. More recently, new concepts have proposed mixed-culture fermentations with two or more microbial species. These approaches promise synergistic effects to enhance the fermentation process and improve the quality of the final products. Here, we review the plant-based milk market, including nutritional, sensory and manufacturing aspects. In addition, we provide an overview of the state-of-the-art fermentation of plant materials using mono- and mixed-cultures. Due to the rapid progress in this field, we can expect well-balanced and naturally fermented plant-based milk alternatives in the coming years.
                Bookmark

                Author and article information

                Journal
                Current Opinion in Food Science
                Current Opinion in Food Science
                Elsevier BV
                22147993
                February 2023
                February 2023
                : 49
                : 100966
                Article
                10.1016/j.cofs.2022.100966
                29275f5e-00b0-435c-96de-85f176958205
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article