0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Revalorisation of Sage (Salvia lavandulifolia Vahl) By-Product Extracts as a Source of Polyphenol Antioxidants for Novel Jelly Candies

      , , ,
      Antioxidants
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sage (Salvia lavandulifolia Vahl) aqueous extracts (SE) obtained from distillation by-products were assessed as antioxidants for nutritionally enhanced jelly candies. Two experimental SEs with a different content of phenolic acids and flavonoids were tested: (i) SE38 (37.6 mg/g) and (ii) SE70 (69.8 mg/g), with salvianic and rosmarinic acids as main polyphenols, respectively. Flavour alteration, stability of sage polyphenols, physical quality traits and antioxidant capacity (AC) were studied in strawberry candies formulated without sugars and enriched with SEs at 0.25, 0.50 and 0.75 g/kg. Despite their different quantitative composition, SE38 and SE70 provided similar antioxidant properties, which were dose dependent. Salvianic and rosmarinic acids were stable without degrading to candy processing (up to 80 °C), keeping their antioxidant potential. There were no relevant differences in flavour or physical traits (pH, °Brix and CIELab colour) between untreated and SE-enriched strawberry candies. The addition of 0.75 g SE/kg resulted in relevant increases of candy AC: (i) from 30 to 38 mg GAE/100 g (total phenolics); (ii) from 10 to 17 mg TE/100 g (DPPH• radical scavenging assay); (iii) from 5 to 13 mg TE/100 g (ABTS·+ radical scavenging assay); (iv) from 84 to 163 µmol Fe2+/100 g (FRAP capacity) and (v) from to 75 to 83% (inhibition of deoxyribose damage). Sage distillation by-products can be revalorised as a source of natural antioxidants to produce healthier candies.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: not found
          • Article: not found

          Antioxidant activity applying an improved ABTS radical cation decolorization assay

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Use of a free radical method to evaluate antioxidant activity

            LWT - Food Science and Technology, 28(1), 25-30
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay.

              A simple, automated test measuring the ferric reducing ability of plasma, the FRAP assay, is presented as a novel method for assessing "antioxidant power." Ferric to ferrous ion reduction at low pH causes a colored ferrous-tripyridyltriazine complex to form. FRAP values are obtained by comparing the absorbance change at 593 nm in test reaction mixtures with those containing ferrous ions in known concentration. Absorbance changes are linear over a wide concentration range with antioxidant mixtures, including plasma, and with solutions containing one antioxidant in purified form. There is no apparent interaction between antioxidants. Measured stoichiometric factors of Trolox, alpha-tocopherol, ascorbic acid, and uric acid are all 2.0; that of bilirubin is 4.0. Activity of albumin is very low. Within- and between-run CVs are <1.0 and <3.0%, respectively, at 100-1000 micromol/liter. FRAP values of fresh plasma of healthy Chinese adults: 612-1634 micromol/liter (mean, 1017; SD, 206; n = 141). The FRAP assay is inexpensive, reagents are simple to prepare, results are highly reproducible, and the procedure is straightforward and speedy. The FRAP assay offers a putative index of antioxidant, or reducing, potential of biological fluids within the technological reach of every laboratory and researcher interested in oxidative stress and its effects.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                ANTIGE
                Antioxidants
                Antioxidants
                MDPI AG
                2076-3921
                January 2023
                January 10 2023
                : 12
                : 1
                : 159
                Article
                10.3390/antiox12010159
                36671021
                288d37c8-bfce-4be2-bbe5-ed8bd846d74d
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article