8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Maternal overnutrition programs hedonic and metabolic phenotypes across generations through sperm tsRNAs

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Significance

          Obesity is a major public health issue worldwide. Easy accessibility of junk food is considered a major contributor to the current obesity epidemic. Thus, the impact of maternal overnutrition in determining disease susceptibility in offspring has received wide attention. It has also been shown that the effects of maternal overnutrition are not limited to the immediate offspring but can also be transmitted to successive generations. Among different epigenetic marks, sperm small noncoding RNAs (sncRNAs) have recently been reported as a direct mediator of acquired traits to the progeny following postnatal trauma or paternal diet. Here, we investigate whether sperm sncRNAs contributes to the transmission of metabolic and hedonic phenotypes across generations following maternal overnutrition.

          Abstract

          There is a growing body of evidence linking maternal overnutrition to obesity and psychopathology that can be conserved across multiple generations. Recently, we demonstrated in a maternal high-fat diet (HFD; MHFD) mouse model that MHFD induced enhanced hedonic behaviors and obesogenic phenotypes that were conserved across three generations via the paternal lineage, which was independent of sperm methylome changes. Here, we show that sperm tRNA-derived small RNAs (tsRNAs) partly contribute to the transmission of such phenotypes. We observe increased expression of sperm tsRNAs in the F1 male offspring born to HFD-exposed dams. Microinjection of sperm tsRNAs from the F1-HFD male into normal zygotes reproduces obesogenic phenotypes and addictive-like behaviors, such as increased preference of palatable foods and enhanced sensitivity to drugs of abuse in the resultant offspring. The expression of several of the differentially expressed sperm tsRNAs predicted targets such as CHRNA2 and GRIN3A, which have been implicated in addiction pathology, are altered in the mesolimbic reward brain regions of the F1-HFD father and the resultant HFD-tsRNA offspring. Together, our findings demonstrate that sperm tsRNA is a potential vector that contributes to the transmission of MHFD-induced addictive-like behaviors and obesogenic phenotypes across generations, thereby emphasizing its role in diverse pathological outcomes.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder.

          Increasing evidence indicates that metabolic disorders in offspring can result from the father's diet, but the mechanism remains unclear. In a paternal mouse model given a high-fat diet (HFD), we showed that a subset of sperm transfer RNA-derived small RNAs (tsRNAs), mainly from 5' transfer RNA halves and ranging in size from 30 to 34 nucleotides, exhibited changes in expression profiles and RNA modifications. Injection of sperm tsRNA fractions from HFD males into normal zygotes generated metabolic disorders in the F1 offspring and altered gene expression of metabolic pathways in early embryos and islets of F1 offspring, which was unrelated to DNA methylation at CpG-enriched regions. Hence, sperm tsRNAs represent a paternal epigenetic factor that may mediate intergenerational inheritance of diet-induced metabolic disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress.

            Epigenetic signatures in germ cells, capable of both responding to the parental environment and shaping offspring neurodevelopment, are uniquely positioned to mediate transgenerational outcomes. However, molecular mechanisms by which these marks may communicate experience-dependent information across generations are currently unknown. In our model of chronic paternal stress, we previously identified nine microRNAs (miRs) that were increased in the sperm of stressed sires and associated with reduced hypothalamic-pituitary-adrenal (HPA) stress axis reactivity in offspring. In the current study, we rigorously examine the hypothesis that these sperm miRs function postfertilization to alter offspring stress responsivity and, using zygote microinjection of the nine specific miRs, demonstrated a remarkable recapitulation of the offspring stress dysregulation phenotype. Further, we associated long-term reprogramming of the hypothalamic transcriptome with HPA axis dysfunction, noting a marked decreased in the expression of extracellular matrix and collagen gene sets that may reflect an underlying change in blood-brain barrier permeability. We conclude by investigating the developmental impact of sperm miRs in early zygotes with single-cell amplification technology, identifying the targeted degradation of stored maternal mRNA transcripts including sirtuin 1 and ubiquitin protein ligase E3a, two genes with established function in chromatin remodeling, and this potent regulatory function of miRs postfertilization likely initiates a cascade of molecular events that eventually alters stress reactivity. Overall, these findings demonstrate a clear mechanistic role for sperm miRs in the transgenerational transmission of paternal lifetime experiences.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Non-coding RNAs as regulators of embryogenesis.

              Non-coding RNAs (ncRNAs) are emerging as key regulators of embryogenesis. They control embryonic gene expression by several means, ranging from microRNA-induced degradation of mRNAs to long ncRNA-mediated modification of chromatin. Many aspects of embryogenesis seem to be controlled by ncRNAs, including the maternal-zygotic transition, the maintenance of pluripotency, the patterning of the body axes, the specification and differentiation of cell types and the morphogenesis of organs. Drawing from several animal model systems, we describe two emerging themes for ncRNA function: promoting developmental transitions and maintaining developmental states. These examples also highlight the roles of ncRNAs in ensuring a robust commitment to one of two possible cell fates.
                Bookmark

                Author and article information

                Journal
                Proc Natl Acad Sci U S A
                Proc. Natl. Acad. Sci. U.S.A
                pnas
                pnas
                PNAS
                Proceedings of the National Academy of Sciences of the United States of America
                National Academy of Sciences
                0027-8424
                1091-6490
                21 May 2019
                6 May 2019
                6 May 2019
                : 116
                : 21
                : 10547-10556
                Affiliations
                [1] aLaboratory of Translational Nutrition Biology, Department of Health Sciences and Technology, ETH Zurich , 8603 Schwerzenbach, Switzerland;
                [2] bInstitute of Anthropology, Johannes Gutenberg University Mainz , 55099 Mainz, Germany;
                [3] cCenter for Transgenic Models, University of Basel , 3350 Basel, Switzerland;
                [4] dFunctional Genomics Center Zurich, ETH Zurich , 8057 Zurich, Switzerland
                Author notes
                1To whom correspondence should be addressed. Email: daria-peleg@ 123456ethz.ch .

                Edited by Nathaniel Heintz, The Rockefeller University, New York, NY, and approved April 11, 2019 (received for review December 10, 2018)

                Author contributions: C.W. and D.P.-R. designed research; G.S., W.S., P.P., V.E., and D.P.-R. performed research; G.S., D.R., L.O., and D.P.-R. analyzed data; G.S. and D.P.-R. wrote the paper; and D.P.-R. conceived the project.

                Article
                201820810
                10.1073/pnas.1820810116
                6534971
                31061112
                281d3c61-6e75-463c-a71a-bed2c8419893
                Copyright © 2019 the Author(s). Published by PNAS.

                This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

                History
                Page count
                Pages: 10
                Funding
                Funded by: Eidgenössische Technische Hochschule Zürich (ETH) 501100003006
                Award ID: ETH-15 13-1
                Award Recipient : Daria Peleg-Raibstein
                Categories
                PNAS Plus
                Biological Sciences
                Neuroscience
                PNAS Plus

                maternal,overnutrition,obesity,epigenetic,sperm rna
                maternal, overnutrition, obesity, epigenetic, sperm rna

                Comments

                Comment on this article