26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Sperm RNA code programmes the metabolic health of offspring

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mammalian sperm RNA is increasingly recognized as an additional source of paternal hereditary information beyond DNA. Environmental inputs, including an unhealthy diet, mental stresses and toxin exposure, can reshape the sperm RNA signature and induce offspring phenotypes that relate to paternal environmental stressors. Our understanding of the categories of sperm RNAs (such as tRNA-derived small RNAs, microRNAs, ribosomal RNA-derived small RNAs and long non-coding RNAs) and associated RNA modifications is expanding and has begun to reveal the functional diversity and information capacity of these molecules. However, the coding mechanism endowed by sperm RNA structures and by RNA interactions with DNA and other epigenetic factors remains unknown. How sperm RNA-encoded information is decoded in early embryos to control offspring phenotypes also remains unclear. Complete deciphering of the ‘sperm RNA code’ with regard to metabolic control could move the field towards translational applications and precision medicine, and this may lead to prevention of intergenerational transmission of obesity and type 2 diabetes mellitus susceptibility.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder.

          Increasing evidence indicates that metabolic disorders in offspring can result from the father's diet, but the mechanism remains unclear. In a paternal mouse model given a high-fat diet (HFD), we showed that a subset of sperm transfer RNA-derived small RNAs (tsRNAs), mainly from 5' transfer RNA halves and ranging in size from 30 to 34 nucleotides, exhibited changes in expression profiles and RNA modifications. Injection of sperm tsRNA fractions from HFD males into normal zygotes generated metabolic disorders in the F1 offspring and altered gene expression of metabolic pathways in early embryos and islets of F1 offspring, which was unrelated to DNA methylation at CpG-enriched regions. Hence, sperm tsRNAs represent a paternal epigenetic factor that may mediate intergenerational inheritance of diet-induced metabolic disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epigenetic inheritance at the agouti locus in the mouse.

            Epigenetic modifications have effects on phenotype, but they are generally considered to be cleared on passage through the germ line in mammals, so that only genetic traits are inherited. Here we describe the inheritance of an epigenetic modification at the agouti locus in mice. In viable yellow ( A(vy)/a) mice, transcription originating in an intra-cisternal A particle (IAP) retrotransposon inserted upstream of the agouti gene (A) causes ectopic expression of agouti protein, resulting in yellow fur, obesity, diabetes and increased susceptibility to tumours. The pleiotropic effects of ectopic agouti expression are presumably due to effects of the paracrine signal on other tissues. Avy mice display variable expressivity because they are epigenetic mosaics for activity of the retrotransposon: isogenic Avy mice have coats that vary in a continuous spectrum from full yellow, through variegated yellow/agouti, to full agouti (pseudoagouti). The distribution of phenotypes among offspring is related to the phenotype of the dam; when an A(vy) dam has the agouti phenotype, her offspring are more likely to be agouti. We demonstrate here that this maternal epigenetic effect is not the result of a maternally contributed environment. Rather, our data show that it results from incomplete erasure of an epigenetic modification when a silenced Avy allele is passed through the female germ line, with consequent inheritance of the epigenetic modification. Because retrotransposons are abundant in mammalian genomes, this type of inheritance may be common.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage.

              Dnmt2 proteins are the most conserved members of the DNA methyltransferase enzyme family, but their substrate specificity and biological functions have been a subject of controversy. We show here that, in addition to tRNA(Asp-GTC), tRNA(Val-AAC) and tRNA(Gly-GCC) are also methylated by Dnmt2. Drosophila Dnmt2 mutants showed reduced viability under stress conditions, and Dnmt2 relocalized to stress granules following heat shock. Strikingly, stress-induced cleavage of tRNAs was Dnmt2-dependent, and Dnmt2-mediated methylation protected tRNAs against ribonuclease cleavage. These results uncover a novel biological function of Dnmt2-mediated tRNA methylation, and suggest a role for Dnmt2 enzymes during the biogenesis of tRNA-derived small RNAs.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Endocrinology
                Nat Rev Endocrinol
                Springer Science and Business Media LLC
                1759-5029
                1759-5037
                June 24 2019
                Article
                10.1038/s41574-019-0226-2
                6626572
                31235802
                ccac4257-3c43-4238-b536-55ac0b858a5e
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article