71
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Human Macrophage Responses to Clinical Isolates from the Mycobacterium tuberculosis Complex Discriminate between Ancient and Modern Lineages

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of the present study was to determine whether there is a correlation between phylogenetic relationship and inflammatory response amongst a panel of clinical isolates representative of the global diversity of the human Mycobacterium tuberculosis Complex (MTBC). Measurement of cytokines from infected human peripheral blood monocyte-derived macrophages revealed a wide variation in the response to different strains. The same pattern of high or low response to individual strains was observed for different pro-inflammatory cytokines and chemokines, and was conserved across multiple human donors. Although each major phylogenetic lineage of MTBC included strains inducing a range of cytokine responses, we found that overall inflammatory phenotypes differed significantly across lineages. In particular, comparison of evolutionarily modern lineages demonstrated a significant skewing towards lower early inflammatory response. The differential response to ancient and modern lineages observed using GM-CSF derived macrophages was also observed in autologous monocyte-derived dendritic cells and murine bone marrow-derived macrophages, but not in human unfractionated peripheral blood mononuclear cells. We hypothesize that the reduced immune responses to modern lineages contribute to more rapid disease progression and transmission, which might be a selective advantage in the context of expanding human populations. In addition to the lineage effects, the large strain-to-strain variation in innate immune responses elicited by MTBC will need to be considered in tuberculosis vaccine development.

          Author Summary

          Mycobacterium tuberculosis is a long-standing human pathogen spread by aerosol transmission between individuals interacting in close social groups. It can be anticipated that the evolution of M. tuberculosis will parallel the evolution of human societies, and the phylogeny as determined by whole genome sequencing of clinical isolates is indeed consistent with emergence of the pathogen with modern humans in Africa and its subsequent dissemination along routes of human migration and trade. The present study was designed to test the hypothesis that the genetic diversity of M. tuberculosis isolates would be reflected in a corresponding diversity in their biological properties. In particular, we explored the interaction of different isolates with the innate immune system, which plays important contrasting roles in initial resistance to infection and in disease transmission. We observed a difference in the innate immune response when we compared isolates belonging to “modern” lineages that have evolved amongst high-density populations in regions of recent massive demographic expansion, with isolates belonging to “ancient” lineages selected in older low-density human populations. Our results provide insights into host-pathogen co-evolution and into fundamental mechanisms underlying the pathogenesis of M. tuberculosis.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes

          In the present study we demonstrate that human monocytes activated by lipopolysaccharides (LPS) were able to produce high levels of interleukin 10 (IL-10), previously designated cytokine synthesis inhibitory factor (CSIF), in a dose dependent fashion. IL-10 was detectable 7 h after activation of the monocytes and maximal levels of IL-10 production were observed after 24-48 h. These kinetics indicated that the production of IL-10 by human monocytes was relatively late as compared to the production of IL-1 alpha, IL-1 beta, IL-6, IL-8, tumor necrosis factor alpha (TNF alpha), and granulocyte colony-stimulating factor (G-CSF), which were all secreted at high levels 4-8 h after activation. The production of IL-10 by LPS activated monocytes was, similar to that of IL-1 alpha, IL-1 beta, IL-6, IL-8, TNF alpha, granulocyte-macrophage colony-stimulating factor (GM-CSF), and G-CSF, inhibited by IL-4. Furthermore we demonstrate here that IL-10, added to monocytes, activated by interferon gamma (IFN-gamma), LPS, or combinations of LPS and IFN-gamma at the onset of the cultures, strongly inhibited the production of IL-1 alpha, IL-1 beta, IL-6, IL-8, TNF alpha, GM-CSF, and G-CSF at the transcriptional level. Viral-IL-10, which has similar biological activities on human cells, also inhibited the production of TNF alpha and GM-CSF by monocytes following LPS activation. Activation of monocytes by LPS in the presence of neutralizing anti-IL-10 monoclonal antibodies resulted in the production of higher amounts of cytokines relative to LPS treatment alone, indicating that endogenously produced IL-10 inhibited the production of IL-1 alpha, IL-1 beta, IL-6, IL-8, TNF alpha, GM-CSF, and G-CSF. In addition, IL-10 had autoregulatory effects since it strongly inhibited IL-10 mRNA synthesis in LPS activated monocytes. Furthermore, endogenously produced IL-10 was found to be responsible for the reduction in class II major histocompatibility complex (MHC) expression following activation of monocytes with LPS. Taken together our results indicate that IL-10 has important regulatory effects on immunological and inflammatory responses because of its capacity to downregulate class II MHC expression and to inhibit the production of proinflammatory cytokines by monocytes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle

            Tuberculosis remains a fatal disease caused by Mycobacterium tuberculosis, which contains various unique components that affect the host immune system. Trehalose-6,6′-dimycolate (TDM; also called cord factor) is a mycobacterial cell wall glycolipid that is the most studied immunostimulatory component of M. tuberculosis. Despite five decades of research on TDM, its host receptor has not been clearly identified. Here, we demonstrate that macrophage inducible C-type lectin (Mincle) is an essential receptor for TDM. Heat-killed mycobacteria activated Mincle-expressing cells, but the activity was lost upon delipidation of the bacteria; analysis of the lipid extracts identified TDM as a Mincle ligand. TDM activated macrophages to produce inflammatory cytokines and nitric oxide, which are completely suppressed in Mincle-deficient macrophages. In vivo TDM administration induced a robust elevation of inflammatory cytokines in sera and characteristic lung inflammation, such as granuloma formation. However, no TDM-induced lung granuloma was formed in Mincle-deficient mice. Whole mycobacteria were able to activate macrophages even in MyD88-deficient background, but the activation was significantly diminished in Mincle/MyD88 double-deficient macrophages. These results demonstrate that Mincle is an essential receptor for the mycobacterial glycolipid, TDM.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development.

              New tools for controlling tuberculosis are urgently needed. Despite our emerging understanding of the biogeography of Mycobacterium tuberculosis, the implications for development of new diagnostics, drugs, and vaccines is unknown. M tuberculosis has a clonal genetic population structure that is geographically constrained. Evidence suggests strain-specific differences in virulence and immunogenicity in light of this global phylogeography. We propose a strain selection framework, based on robust phylogenetic markers, which will allow for systematic and comprehensive evaluation of new tools for tuberculosis control.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                March 2011
                March 2011
                3 March 2011
                : 7
                : 3
                : e1001307
                Affiliations
                [1 ]Mycobacterial Research Division, MRC National Institute for Medical Research, London, United Kingdom
                [2 ]Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
                [3 ]University of Basel, Basel, Switzerland
                New York Medical College, United States of America
                Author notes

                Conceived and designed the experiments: DP SG DY. Performed the experiments: DP. Analyzed the data: DP SG IC DY. Wrote the paper: DP SG IC DY.

                Article
                10-PLPA-RA-4004R3
                10.1371/journal.ppat.1001307
                3048359
                21408618
                28060d48-720d-4d71-9271-6b3897c561b0
                Portevin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 2 September 2010
                : 28 January 2011
                Page count
                Pages: 12
                Categories
                Research Article
                Evolutionary Biology/Microbial Evolution and Genomics
                Immunology/Innate Immunity
                Infectious Diseases/Bacterial Infections
                Microbiology/Cellular Microbiology and Pathogenesis

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article