5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Chemiluminescence of Conjugated-Polymer Nanoparticles by Direct Oxidation with Hypochlorite

      1 , 1 , 1 , 1
      Analytical Chemistry
      American Chemical Society (ACS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d4426164e77">Chemiluminescence (CL) is an advantageous detection tool for in vivo imaging because of the high signal-to-noise ratio of its optical-signal readout, which does not require an external excitation source. Conjugated polymers (CPs) are now used as an energy acceptor in CL nanoparticles to enhance the CL. Here, we demonstrate CL from the direct oxidation of CP backbones in conjugated-polymer nanoparticles (CPNs) by hypochlorite. Such CL CPNs completely avoid the involvement of small-molecule CL donors. The strategy greatly simplifies CL-probes preparation and increases the stability of CL nanoprobes by overcoming the leakage problem of CL donors in nanoparticles. Hypochlorite can oxidize the vinylene bond (C═C) in polyfluorene-vinylene (PFV)/polyphenylenevinylene (PPV) via π2-π2 cycloaddition to form a PFV- or PPV-dioxetane intermediate that is unstable and can spontaneously degrade into PFV- or PPV-aldehyde and generate photons. The dioxetane-intermediate formation was confirmed by UV-vis-absorption, fluorescence, nuclear-magnetic-resonance (1H NMR), and Fourier-transform infrared (FT-IR) spectroscopy. The CL quantum yield (QY) of the brightest CL probe, CPN-poly[(9,9-di(2-ethylhexyl)-9 H-fluorene-2,7-vinylene)- co-(1-methoxy-4-(2-ethylhexyloxy)-2,5-phenylenevinylene)] (90:10 mol ratio, CPN-PFV- co-MEHPV), was 17.79 einsteins/mol (namely, photons per particle). CPN-PFV- co-MEHPV was size-stable, noncytotoxic, selective, and sensitive for hypochlorite detection. The linear range and the LOD of CPN-PFV- co-MEHPV for ClO- detection are 2-30 and 0.47 μM. Thus, CPN-PFV- co-MEHPV was successfully applied for in vivo imaging of endogenously produced ClO- in living animals. We expect that the represented strategy could be extended to construct other CL nanoprobes for bioimaging and disease diagnosis by simply optimizing and transforming CP backbones; such CL CPNs will have a profound impact on the field of bioimaging. </p>

          Related collections

          Author and article information

          Journal
          Analytical Chemistry
          Anal. Chem.
          American Chemical Society (ACS)
          0003-2700
          1520-6882
          November 2018
          November 20 2018
          October 25 2018
          November 20 2018
          : 90
          : 22
          : 13714-13722
          Affiliations
          [1 ]Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang’an Street, Xi’an, Shaanxi 710119, People’s Republic of China
          Article
          10.1021/acs.analchem.8b04109
          30354067
          27c7584e-a7ec-4712-bc25-118f1649e9a9
          © 2018
          History

          Comments

          Comment on this article