23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Upregulation of LncRNA BCYRN1 promotes tumor progression and enhances EpCAM expression in gastric carcinoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Brain cytoplasmic RNA 1 (BCYRN1), along non-coding RNA, plays a critical role in various diseases, including some cancers. However, the expression of BCYRN1 and its roles in gastric carcinoma (GC) still remain unidentified. Thus, this study employed RT-qPCR to detect expression of BCYRN1 in 85 paired GC samples and adjacent normal tissues, and performed in vitro studies to explore effects of BCYRN1 in GC cells on cell proliferation, apoptosis and migration. We found BCYRN1 was significantly upregulated in GC samples, and its expression was positively correlated with advanced TNM stage ( p = 0.0012) and tumor size ( p = 0.027). Functionally, BCYRN1 knockdown by siRNA could inhibit cell proliferation, induce G1/G0 cell cycle arrest, increase apoptosis and impair migratory ability of AGS cells. Moreover, the results of RT-qPCR and western blotting indicated that knockdown of BCYRN1 notably decreased the expression of epithelial cell adhesion molecules (EpCAM). Otherwise, overexpression of BCYRN1 in GC cells (BGC-823 and SGC-7901) could reverse the effects of BCYRN1 knockdown. Taken together, our data indicate for the first time that BCYRN1 acts as an oncogenic lncRNA in GC progression and may be a potential therapeutic target in GC.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Nuclear signalling by tumour-associated antigen EpCAM.

          EpCAM was found to be overexpressed on epithelial progenitors, carcinomas and cancer-initiating cells. The role of EpCAM in proliferation, and its association with cancer is poorly explained by proposed cell adhesion functions. Here we show that regulated intramembrane proteolysis activates EpCAM as a mitogenic signal transducer in vitro and in vivo. This involves shedding of its ectodomain EpEX and nuclear translocation of its intracellular domain EpICD. Cleavage of EpCAM is sequentially catalysed by TACE and presenilin-2. Pharmacological inhibition or genetic silencing of either protease impairs growth-promoting signalling by EpCAM, which is compensated for by EpICD. Released EpICD associates with FHL2, beta-catenin and Lef-1 to form a nuclear complex that contacts DNA at Lef-1 consensus sites, induces gene transcription and is oncogenic in immunodeficient mice. In patients, EpICD was found in nuclei of colon carcinoma but not of normal tissue. Nuclear signalling of EpCAM explains how EpCAM functions in cell proliferation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Frequent high-level expression of the immunotherapeutic target Ep-CAM in colon, stomach, prostate and lung cancers

            Epithelial cell adhesion molecule (Ep-CAM; CD326) is used as a target by many immunotherapeutic approaches, but little data are available about Ep-CAM expression in major human malignancies with respect to level, frequency, tumour stage, grade, histologic tumour type and impact on survival. We analysed by immunohistochemical staining tissue microarrays with 4046 primary human carcinoma samples from colon, stomach, prostate and lung cancers for both frequency and intensity of Ep-CAM expression under highly standardised conditions. A total of 3360 samples were analysable. High-level Ep-CAM expression was observed in 97.7% (n=1186) of colon, 90.7% of gastric (n=473), and 87.2% of prostate cancers (n=414), and in 63.9% of lung cancers (n=1287). No detectable Ep-CAM staining was found with only 0.4% of colon, 2.5% of gastric, 1.9% of prostate cancers, and 13.5% of lung cancers. The only significant correlation of Ep-CAM expression with tumour grading was observed in colon cancer where high-level Ep-CAM expression on grade 3 tumours was down to 92.1% (P<0.0001). Adenosquamous and squamous carcinomas of the lung had a lower percentage of high-level Ep-CAM expression compared to adenocarcinomas with 35.4 and 53.6%, respectively, and with 45.5 and 17.3% of tumours being Ep-CAM negative. With the exception of moderately differentiated colon carcinoma, where patients not expressing Ep-CAM on their tumours showed an inferior survival (P=0.0014), correlation of Ep-CAM expression with survival did not reach statistical significance for any of the other cancer indications and subgroups. In conclusion, the data strongly support the notion that Ep-CAM is a prime target for immunotherapies in major human malignancies. This is because the most common human cancers show (i) a low frequency of Ep-CAM-negative tumours, (ii) a high frequency of Ep-CAM expression on cells of a given tumour, and (iii) for most cancers, an insignificant influence of tumour staging, grading and histology on Ep-CAM expression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The carcinoma-associated antigen EpCAM upregulates c-myc and induces cell proliferation.

              Epithelial cell adhesion molecule (EpCAM) is a membrane glycoprotein expressed on adenomatous and simple epithelia, where it is involved in homophilic adhesion at the basolateral membrane. Carcinomas strongly overexpress EpCAM through an, as yet, unknown mechanism. Interestingly, otherwise EpCAM-negative squamous epithelia are seen to express EpCAM concomitant with their transformation and de-differentiation. The amount of EpCAM and the number of expressing cells both increase with the grade of dysplasia. Despite an important amount of data correlating the expression of EpCAM with cellular proliferation and de-differentiation, such as the coexpression with Ki-67, a marker for proliferation, it is unknown whether EpCAM may directly contribute to carcinogenesis. Here, we show that EpCAM has a direct impact on cell cycle and proliferation, and the ability to rapidly upregulate the proto-oncogene c-myc and cyclin A/E. Human epithelial 293 cells as well as murine NIH3T3 fibroblasts expressing EpCAM had a decreased requirement for growth factors, enhanced metabolic activity and colony formation capacity. Importantly, the inhibition of EpCAM expression with antisense mRNA led to a strong decrease in proliferation and metabolism in human carcinoma cells. Moreover, domain swapping experiments demonstrated that the intracellular part of EpCAM is necessary and sufficient to transduce the effects described. Thus, the data presented here highlight the role of EpCAM, demonstrating for the first time a direct link to cell cycle and proliferation.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                12 January 2018
                21 December 2017
                : 9
                : 4
                : 4851-4861
                Affiliations
                1 Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
                2 Department of Laboratory, Yuhuangding Hospital, Qingdao University Medical College, Yantai, Shandong Province, China
                3 Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
                4 Clinical Medicine of Undergraduate, Taishan Medical University, Taian, Shandong Province, China
                5 Wakayama Medical University, Wakayama, Wakayama, Japan
                Author notes
                Correspondence to: Yi Zhang, yizhang@ 123456sdu.edu.cn
                Article
                23585
                10.18632/oncotarget.23585
                5797017
                29435146
                2775d0ab-6be8-4bbd-9b4c-c999ecd3f0de
                Copyright: © 2018 Ren et al.

                This article is distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 9 June 2017
                : 13 December 2017
                Categories
                Research Paper

                Oncology & Radiotherapy
                bcyrn1,lncrna,gastric carcinoma,tumor progression,epcam
                Oncology & Radiotherapy
                bcyrn1, lncrna, gastric carcinoma, tumor progression, epcam

                Comments

                Comment on this article