105
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Frequent high-level expression of the immunotherapeutic target Ep-CAM in colon, stomach, prostate and lung cancers

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Epithelial cell adhesion molecule (Ep-CAM; CD326) is used as a target by many immunotherapeutic approaches, but little data are available about Ep-CAM expression in major human malignancies with respect to level, frequency, tumour stage, grade, histologic tumour type and impact on survival. We analysed by immunohistochemical staining tissue microarrays with 4046 primary human carcinoma samples from colon, stomach, prostate and lung cancers for both frequency and intensity of Ep-CAM expression under highly standardised conditions. A total of 3360 samples were analysable. High-level Ep-CAM expression was observed in 97.7% ( n=1186) of colon, 90.7% of gastric ( n=473), and 87.2% of prostate cancers ( n=414), and in 63.9% of lung cancers ( n=1287). No detectable Ep-CAM staining was found with only 0.4% of colon, 2.5% of gastric, 1.9% of prostate cancers, and 13.5% of lung cancers. The only significant correlation of Ep-CAM expression with tumour grading was observed in colon cancer where high-level Ep-CAM expression on grade 3 tumours was down to 92.1% ( P<0.0001). Adenosquamous and squamous carcinomas of the lung had a lower percentage of high-level Ep-CAM expression compared to adenocarcinomas with 35.4 and 53.6%, respectively, and with 45.5 and 17.3% of tumours being Ep-CAM negative. With the exception of moderately differentiated colon carcinoma, where patients not expressing Ep-CAM on their tumours showed an inferior survival ( P=0.0014), correlation of Ep-CAM expression with survival did not reach statistical significance for any of the other cancer indications and subgroups. In conclusion, the data strongly support the notion that Ep-CAM is a prime target for immunotherapies in major human malignancies. This is because the most common human cancers show (i) a low frequency of Ep-CAM-negative tumours, (ii) a high frequency of Ep-CAM expression on cells of a given tumour, and (iii) for most cancers, an insignificant influence of tumour staging, grading and histology on Ep-CAM expression.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          Frequent EpCam protein expression in human carcinomas.

          Expression of the transmembrane glycoprotein EpCam (epithelial cellular adhesion molecule) occurs in normal epithelium of different organs and was described in carcinomas of various sites. Specific anti-EpCam therapies are now being used in clinical trials. Thus, it is of interest to know which tumor types express or overexpress this protein, and in what frequency. We therefore analyzed EpCam expression by immunohistochemistry on a tissue microarray containing 3900 tissue samples of 134 different histological tumor types and subtypes. EpCam expression was detected in 98 of 131 tumor categories. At least a weak EpCam expression in >10% of tumors was observed in 87 of 131 different tumor categories. Adenocarcinomas of the colon (81%) and pancreas (78%), as well as hormone-refractory adenocarcinomas of the prostate (71%), were identified as particularly promising therapy targets with a high fraction of strongly positive tumors. Most soft-tissue tumors and all lymphomas were EpCam negative. It is concluded that anti-EpCam therapies, if proven to be successful, will have broad applications in a wide variety of carcinomas.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            EpCAM is overexpressed in breast cancer and is a potential target for breast cancer gene therapy.

            EpCAM (epithelial cell adhesion molecule) is a cell surface molecule that is known to be highly expressed in colon and other epithelial carcinomas. EpCAM is involved in cell-to-cell adhesion and has been the target of antibody therapy in several clinical trials. To assess the value of EpCAM as a novel target for breast cancer gene therapy, we performed real-time reverse transcription-PCR to quantify the level of EpCAM mRNA expression in normal breast tissue and primary and metastatic breast cancers. We found that EpCAM is overexpressed 100- to 1000-fold in primary and metastatic breast cancer. Silencing EpCAM gene expression with EpCAM short interfering RNA (siRNA) resulted in a 35-80% decrease in the rate of cell proliferation in four different breast cancer cell lines. EpCAM siRNA treatment decreased cell migration by 91.8% and cell invasion by 96.4% in the breast cancer cell line MDA-MB-231 in vitro. EpCAM siRNA treatment was also associated with an increase in the detergent-insoluble protein fraction of E-cadherin, alpha-catenin, and beta-catenin, consistent with the known biology of EpCAM as a regulator of cell adhesion. Our hypothesis is that modulation of EpCAM expression can affect cell migration, invasion, and proliferation by enhancing E-cadherin-mediated cell-to-cell adhesion. These data provide compelling evidence that EpCAM is a potential novel target for breast cancer gene therapy and offer insights into the mechanisms associated with EpCAM gene silencing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transcriptional regulation of cadherins during development and carcinogenesis.

              The cadherin superfamily of Ca(2+)-dependent homophilic adhesion molecules plays a critical role in regulating cell-to-cell interactions. During development, the expression of different cadherins is highly dynamic, since they are associated with the morphogenesis, establishment and/or maintenance of different tissues. Alterations in cadherin expression or function occur frequently during carcinogenesis, such as the loss of the epithelial cadherin (E-cadherin) and/or the aberrant expression of other cadherins. Indeed, the aberrant expression of cadherins has been detected during carcinoma invasion, a process which is reminiscent of the epithelial-mesenchymal transition (EMT) so important in many critical developmental processes. The functional regulation of cadherins can occur at many different levels, from transcriptional regulation to the control of the strength of the cadherin-mediated cell-cell interaction. In this review, we will focus on the transcriptional control of cadherin expression, both in development and carcinogenesis, paying particular attention to the regulation of E-cadherin given its proposed role as a suppressor of invasion. We will discuss the main genetic and epigenetic mechanisms involved in down-regulating E-cadherin expression, and we will analyse the mechanisms involved in regulating EMT, in an attempt to elucidate which elements are common to this process in both physiological and pathological situations.
                Bookmark

                Author and article information

                Journal
                Br J Cancer
                British Journal of Cancer
                0007-0920
                1532-1827
                10 January 2006
                16 January 2006
                : 94
                : 1
                : 128-135
                Affiliations
                [1 ]Institute of Pathology, University Hospital Basel, Schönbeinstrasse 40, 4003 Basel, Switzerland
                [2 ]Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
                [3 ]Department of Pathology, University Hospital Freiburg, Freiburg i. Br., Germany
                [4 ]Diomeda Life Sciences Inc., Rockville, MD, USA
                [5 ]Institute for Pathology, University Clinic Hamburg-Eppendorf, Hamburg, Germany
                [6 ]Micromet AG, Staffelseestr. 2, 81477 Munich, Germany
                Author notes
                [* ]Author for correspondence: pwent@ 123456uhbs.ch
                Article
                6602924
                10.1038/sj.bjc.6602924
                2361083
                16404366
                fa80ab3c-9a8c-40e1-8414-eff6e289b077
                Copyright 2006, Cancer Research UK
                History
                : 09 September 2005
                : 21 November 2005
                : 29 November 2005
                Categories
                Molecular Diagnostics

                Oncology & Radiotherapy
                lung cancer,prostate cancer,monoclonal antibody,colon cancer,ep-cam,stomach cancer

                Comments

                Comment on this article