632
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      How to form and close the brain: insight into the mechanism of cranial neural tube closure in mammals

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The development of the embryonic brain critically depends on successfully completing cranial neural tube closure (NTC). Failure to properly close the neural tube results in significant and potentially lethal neural tube defects (NTDs). We believe these malformations are caused by disruptions in normal developmental programs such as those involved in neural plate morphogenesis and patterning, tissue fusion, and coordinated cell behaviors. Cranial NTDs include anencephaly and craniorachischisis, both lethal human birth defects. Newly emerging methods for molecular and cellular analysis offer a deeper understanding of not only the developmental NTC program itself but also mechanical and kinetic aspects of closure that may contribute to cranial NTDs. Clarifying the underlying mechanisms involved in NTC and how they relate to the onset of specific NTDs in various experimental models may help us develop novel intervention strategies to prevent NTDs.

          Related collections

          Most cited references153

          • Record: found
          • Abstract: found
          • Article: not found

          Autophagy in cell death: an innocent convict?

          The visualization of autophagosomes in dying cells has led to the belief that autophagy is a nonapoptotic form of programmed cell death. This concept has now been evaluated using cells and organisms deficient in autophagy genes. Most evidence indicates that, at least in cells with intact apoptotic machinery, autophagy is primarily a pro-survival rather than a pro-death mechanism. This review summarizes the evidence linking autophagy to cell survival and cell death, the complex interplay between autophagy and apoptosis pathways, and the role of autophagy-dependent survival and death pathways in clinical diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Discovery of Atg5/Atg7-independent alternative macroautophagy.

            Macroautophagy is a process that leads to the bulk degradation of subcellular constituents by producing autophagosomes/autolysosomes. It is believed that Atg5 (ref. 4) and Atg7 (ref. 5) are essential genes for mammalian macroautophagy. Here we show, however, that mouse cells lacking Atg5 or Atg7 can still form autophagosomes/autolysosomes and perform autophagy-mediated protein degradation when subjected to certain stressors. Although lipidation of the microtubule-associated protein light chain 3 (LC3, also known as Map1lc3a) to form LC3-II is generally considered to be a good indicator of macroautophagy, it did not occur during the Atg5/Atg7-independent alternative process of macroautophagy. We also found that this alternative process of macroautophagy was regulated by several autophagic proteins, including Unc-51-like kinase 1 (Ulk1) and beclin 1. Unlike conventional macroautophagy, autophagosomes seemed to be generated in a Rab9-dependent manner by the fusion of isolation membranes with vesicles derived from the trans-Golgi and late endosomes. In vivo, Atg5-independent alternative macroautophagy was detected in several embryonic tissues. It also had a function in clearing mitochondria during erythroid maturation. These results indicate that mammalian macroautophagy can occur through at least two different pathways: an Atg5/Atg7-dependent conventional pathway and an Atg5/Atg7-independent alternative pathway.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cadherin switching.

              The cadherin molecules at adherens junctions have multiple isoforms. Cadherin isoform switching (cadherin switching) occurs during normal developmental processes to allow cell types to segregate from one another. Tumor cells often recapitulate this activity and the result is an aggressive tumor cell that gains the ability to leave the site of the tumor and metastasize. At present, we understand some of the mechanisms that promote cadherin switching and some of the pathways downstream of this process that influence cell behavior. Specific cadherin family members influence growth-factor-receptor signaling and Rho GTPases to promote cell motility and invasion. In addition, p120-catenin probably plays multiple roles in cadherin switching, regulating Rho GTPases and stabilizing cadherins.
                Bookmark

                Author and article information

                Contributors
                +81-3-58414863 , +81-3-58414867 , bunbun@mol.f.u-tokyo.ac.jp
                Journal
                Cell Mol Life Sci
                Cell. Mol. Life Sci
                Cellular and Molecular Life Sciences
                Springer Basel (Basel )
                1420-682X
                1420-9071
                15 December 2012
                15 December 2012
                2013
                : 70
                : 3171-3186
                Affiliations
                Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, and CREST, JST, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
                Article
                1227
                10.1007/s00018-012-1227-7
                3742426
                23242429
                2775552e-19be-4487-bf60-7bc246594464
                © The Author(s) 2012

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

                History
                : 30 August 2012
                : 7 November 2012
                : 27 November 2012
                Categories
                Review
                Custom metadata
                © Springer Basel 2013

                Molecular biology
                neural tube closure,brain development,tissue fusion,exencephaly,live imaging
                Molecular biology
                neural tube closure, brain development, tissue fusion, exencephaly, live imaging

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content136

                Cited by22

                Most referenced authors1,942