4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Emerging roles for the ER stress sensor IRE1α in metabolic regulation and disease

      , ,
      Journal of Biological Chemistry
      American Society for Biochemistry & Molecular Biology (ASBMB)

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d1083406e135">Inositol-requiring enzyme 1 (IRE1) is an endoplasmic reticulum (ER)-resident transmembrane protein that senses ER stress and is evolutionarily conserved from yeast to humans. IRE1 possesses both Ser/Thr protein kinase and endoribonuclease (RNase) activities within its cytoplasmic domain and is activated through autophosphorylation and dimerization/oligomerization. It mediates a critical arm of the unfolded protein response to manage ER stress provoked by lumenal overload of unfolded/misfolded proteins. Emerging lines of evidence have revealed that in mammals, IRE1α functions as a multifunctional signal transducer that responds to metabolic cues and nutrient stress conditions, exerting profound and broad effects on metabolic homeostasis. In this review, we cover recent advances in our understanding of how IRE1α integrates a variety of metabolic and stress signals and highlight its tissue-specific or context-dependent metabolic activities. We also discuss how dysregulation of this metabolic stress sensor during handling of excessive nutrients in cells contributes to the progression of obesity and metabolic disorders. </p>

          Related collections

          Most cited references166

          • Record: found
          • Abstract: found
          • Article: not found

          Microbial ecology: human gut microbes associated with obesity.

          Two groups of beneficial bacteria are dominant in the human gut, the Bacteroidetes and the Firmicutes. Here we show that the relative proportion of Bacteroidetes is decreased in obese people by comparison with lean people, and that this proportion increases with weight loss on two types of low-calorie diet. Our findings indicate that obesity has a microbial component, which might have potential therapeutic implications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The unfolded protein response: from stress pathway to homeostatic regulation.

            The vast majority of proteins that a cell secretes or displays on its surface first enter the endoplasmic reticulum (ER), where they fold and assemble. Only properly assembled proteins advance from the ER to the cell surface. To ascertain fidelity in protein folding, cells regulate the protein-folding capacity in the ER according to need. The ER responds to the burden of unfolded proteins in its lumen (ER stress) by activating intracellular signal transduction pathways, collectively termed the unfolded protein response (UPR). Together, at least three mechanistically distinct branches of the UPR regulate the expression of numerous genes that maintain homeostasis in the ER or induce apoptosis if ER stress remains unmitigated. Recent advances shed light on mechanistic complexities and on the role of the UPR in numerous diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The unfolded protein response: controlling cell fate decisions under ER stress and beyond.

              Protein-folding stress at the endoplasmic reticulum (ER) is a salient feature of specialized secretory cells and is also involved in the pathogenesis of many human diseases. ER stress is buffered by the activation of the unfolded protein response (UPR), a homeostatic signalling network that orchestrates the recovery of ER function, and failure to adapt to ER stress results in apoptosis. Progress in the field has provided insight into the regulatory mechanisms and signalling crosstalk of the three branches of the UPR, which are initiated by the stress sensors protein kinase RNA-like ER kinase (PERK), inositol-requiring protein 1α (IRE1α) and activating transcription factor 6 (ATF6). In addition, novel physiological outcomes of the UPR that are not directly related to protein-folding stress, such as innate immunity, metabolism and cell differentiation, have been revealed.
                Bookmark

                Author and article information

                Contributors
                Journal
                Journal of Biological Chemistry
                Journal of Biological Chemistry
                American Society for Biochemistry & Molecular Biology (ASBMB)
                00219258
                December 2019
                December 2019
                : 294
                : 49
                : 18726-18741
                Article
                10.1074/jbc.REV119.007036
                6901316
                31666338
                26caa457-f6ef-407f-83c6-77f513f11bdd
                © 2019

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article