186
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nutrition Facts in Multiple Sclerosis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The question whether dietary habits and lifestyle have influence on the course of multiple sclerosis (MS) is still a matter of debate, and at present, MS therapy is not associated with any information on diet and lifestyle. Here we show that dietary factors and lifestyle may exacerbate or ameliorate MS symptoms by modulating the inflammatory status of the disease both in relapsing-remitting MS and in primary-progressive MS. This is achieved by controlling both the metabolic and inflammatory pathways in the human cell and the composition of commensal gut microbiota. What increases inflammation are hypercaloric Western-style diets, characterized by high salt, animal fat, red meat, sugar-sweetened drinks, fried food, low fiber, and lack of physical exercise. The persistence of this type of diet upregulates the metabolism of human cells toward biosynthetic pathways including those of proinflammatory molecules and also leads to a dysbiotic gut microbiota, alteration of intestinal immunity, and low-grade systemic inflammation. Conversely, exercise and low-calorie diets based on the assumption of vegetables, fruit, legumes, fish, prebiotics, and probiotics act on nuclear receptors and enzymes that upregulate oxidative metabolism, downregulate the synthesis of proinflammatory molecules, and restore or maintain a healthy symbiotic gut microbiota. Now that we know the molecular mechanisms by which dietary factors and exercise affect the inflammatory status in MS, we can expect that a nutritional intervention with anti-inflammatory food and dietary supplements can alleviate possible side effects of immune-modulatory drugs and the symptoms of chronic fatigue syndrome and thus favor patient wellness.

          Related collections

          Most cited references113

          • Record: found
          • Abstract: found
          • Article: not found

          Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance.

          Polyphenols constitute one of the most numerous and ubiquitous groups of plant metabolites and are an integral part of both human and animal diets. Ranging from simple phenolic molecules to highly polymerized compounds with molecular weights of greater than 30,000 Da, the occurrence of this complex group of substances in plant foods is extremely variable. Polyphenols traditionally have been considered antinutrients by animal nutritionists, because of the adverse effect of tannins, one type of polyphenol, on protein digestibility. However, recent interest in food phenolics has increased greatly, owing to their antioxidant capacity (free radical scavenging and metal chelating activities) and their possible beneficial implications in human health, such as in the treatment and prevention of cancer, cardiovascular disease, and other pathologies. Much of the literature refers to a single group of plant phenolics, the flavonoids. This review offers an overview of the nutritional effects of the main groups of polyphenolic compounds, including their metabolism, effects on nutrient bioavailability, and antioxidant activity, as well as a brief description of the chemistry of polyphenols and their occurrence in plant foods.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The relation between inflammation and neurodegeneration in multiple sclerosis brains

            Some recent studies suggest that in progressive multiple sclerosis, neurodegeneration may occur independently from inflammation. The aim of our study was to analyse the interdependence of inflammation, neurodegeneration and disease progression in various multiple sclerosis stages in relation to lesional activity and clinical course, with a particular focus on progressive multiple sclerosis. The study is based on detailed quantification of different inflammatory cells in relation to axonal injury in 67 multiple sclerosis autopsies from different disease stages and 28 controls without neurological disease or brain lesions. We found that pronounced inflammation in the brain is not only present in acute and relapsing multiple sclerosis but also in the secondary and primary progressive disease. T- and B-cell infiltrates correlated with the activity of demyelinating lesions, while plasma cell infiltrates were most pronounced in patients with secondary progressive multiple sclerosis (SPMS) and primary progressive multiple sclerosis (PPMS) and even persisted, when T- and B-cell infiltrates declined to levels seen in age matched controls. A highly significant association between inflammation and axonal injury was seen in the global multiple sclerosis population as well as in progressive multiple sclerosis alone. In older patients (median 76 years) with long-disease duration (median 372 months), inflammatory infiltrates declined to levels similar to those found in age-matched controls and the extent of axonal injury, too, was comparable with that in age-matched controls. Ongoing neurodegeneration in these patients, which exceeded the extent found in normal controls, could be attributed to confounding pathologies such as Alzheimer's or vascular disease. Our study suggests a close association between inflammation and neurodegeneration in all lesions and disease stages of multiple sclerosis. It further indicates that the disease processes of multiple sclerosis may die out in aged patients with long-standing disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              AMPK and PPARdelta agonists are exercise mimetics.

              The benefits of endurance exercise on general health make it desirable to identify orally active agents that would mimic or potentiate the effects of exercise to treat metabolic diseases. Although certain natural compounds, such as reseveratrol, have endurance-enhancing activities, their exact metabolic targets remain elusive. We therefore tested the effect of pathway-specific drugs on endurance capacities of mice in a treadmill running test. We found that PPARbeta/delta agonist and exercise training synergistically increase oxidative myofibers and running endurance in adult mice. Because training activates AMPK and PGC1alpha, we then tested whether the orally active AMPK agonist AICAR might be sufficient to overcome the exercise requirement. Unexpectedly, even in sedentary mice, 4 weeks of AICAR treatment alone induced metabolic genes and enhanced running endurance by 44%. These results demonstrate that AMPK-PPARdelta pathway can be targeted by orally active drugs to enhance training adaptation or even to increase endurance without exercise.
                Bookmark

                Author and article information

                Journal
                ASN Neuro
                ASN Neuro
                ASN
                spasn
                ASN NEURO
                SAGE Publications (Sage CA: Los Angeles, CA )
                1759-0914
                9 February 2015
                February 2015
                : 7
                : 1
                : 1759091414568185
                Affiliations
                [1 ]Department of Sciences, University of Basilicata, Potenza, Italy
                Author notes
                [*]Paolo Riccio, Department of Sciences, University of Basilicata, Via Cesare Diomede-Fresa 1/10, 70126 Bari, Italy. Email: paoloxriccio@ 123456gmail.com
                Article
                10.1177_1759091414568185
                10.1177/1759091414568185
                4342365
                25694551
                26c2e8b3-9b4b-411d-a219-54bd75d582da
                © The Author(s) 2015

                This article is distributed under the terms of the Creative Commons Attribution 3.0 License ( http://www.creativecommons.org/licenses/by/3.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page ( http://www.uk.sagepub.com/aboutus/openaccess.htm).

                History
                Categories
                Review
                Custom metadata
                January-February 2015

                Neurosciences
                complementary alternative medicine,gut microbiota,inflammation,lifestyle,multiple sclerosis,nutrition

                Comments

                Comment on this article