0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A Cascade Strategy Boosting Hydroxyl Radical Generation with Aggregation-Induced Emission Photosensitizers-Albumin Complex for Photodynamic Therapy.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Effective photodynamic therapy (PDT) requires photosensitizers (PSs) to massively generate type I reactive oxygen species (ROS) in a less oxygen-dependent manner in the hypoxia tumor microenvironment. Herein, we present a cascade strategy to boost type I ROS, especially hydroxyl radical (OH·-), generation with an aggregation-induced emission (AIE) photosensitizer-albumin complex for hypoxia-tolerant PDT. The cationic AIE PS TPAQ-Py-PF6 (TPA = triphenylamine, Q = anthraquinone, Py = pyridine) contains three important moieties to cooperatively enhance free radical generation: the AIE-active TPA unit ensures the effective triplet exciton generation in aggregate, the anthraquinone moiety possesses the redox cycling ability to promote electron transfer, while the cationic methylpyridinium cation further increases intramolecular charge transfer and electron separation processes. Inserting the cationic TPAQ-Py-PF6 into the hydrophobic domain of bovine serum albumin nanoparticles (BSA NPs) could greatly immobilize its molecular geometry to further increase triplet exciton generation, while the electron-rich microenvironment of BSA ultimately leads to OH·- generation. Both experimental and theoretical results confirm the effectiveness of our molecular cationization and BSA immobilization cascade strategy for enhancing OH·- generation. In vitro and in vivo experiments validate the excellent antitumor PDT performance of BSA NPs, superior to the conventional polymeric encapsulation approach. Such a multidimensional cascade strategy for specially boosting OH·- generation shall hold great potential in hypoxia-tolerant PDT and related antitumor applications.

          Related collections

          Author and article information

          Journal
          ACS Nano
          ACS nano
          American Chemical Society (ACS)
          1936-086X
          1936-0851
          Sep 12 2023
          : 17
          : 17
          Affiliations
          [1 ] AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
          [2 ] Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China.
          [3 ] Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City 518172, Guangdong, China.
          Article
          10.1021/acsnano.3c04256
          37606032
          26b27992-75a1-4b64-ac62-89823ed9672e
          History

          hypoxia,photodynamic therapy,protein complex,type I photosensitizers,aggregation-induced emission

          Comments

          Comment on this article