15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      New Aspects of Lipotoxicity in Nonalcoholic Steatohepatitis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          NASH is becoming increasingly common worldwide because of the growing global prevalence of obesity and consequently NAFLD. Unfortunately, the mechanism of progression of NAFLD to NASH and then cirrhosis is not completely understood. Several factors, including insulin resistance, inflammation, oxidative stress, lipotoxicity, and bile acid (BA) toxicity, have been reported to be associated with NASH progression. The release of fatty acids from dysfunctional and insulin-resistant adipocytes results in lipotoxicity, which is caused by the ectopic accumulation of triglyceride-derived toxic metabolites and the subsequent activation of inflammatory pathways, cellular dysfunction, and lipoapoptosis. Adipose tissue (AT), especially visceral AT, comprises multiple cell populations that produce adipokines and insulin-like growth factor, plus macrophages and other immune cells that stimulate the development of lipotoxic liver disease. These biomolecules have been recently linked with many digestive diseases and gastrointestinal malignancies such as hepatocellular carcinoma. This made us question what role lipotoxicity has in the natural history of liver fibrosis. Therefore, this review focuses on the close relationship between AT and NASH. A good comprehension of the pathways that are related to dysregulated AT, metabolic dysfunction, and hepatic lipotoxicity will result in the development of prevention strategies and promising therapeutics for patients with NASH.

          Related collections

          Most cited references105

          • Record: found
          • Abstract: found
          • Article: not found

          Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study.

          Visceral adipose tissue (VAT) compartments may confer increased metabolic risk. The incremental utility of measuring both visceral and subcutaneous abdominal adipose tissue (SAT) in association with metabolic risk factors and underlying heritability has not been well described in a population-based setting. Participants (n=3001) were drawn from the Framingham Heart Study (48% women; mean age, 50 years), were free of clinical cardiovascular disease, and underwent multidetector computed tomography assessment of SAT and VAT volumes between 2002 and 2005. Metabolic risk factors were examined in relation to increments of SAT and VAT after multivariable adjustment. Heritability was calculated using variance-components analysis. Among both women and men, SAT and VAT were significantly associated with blood pressure, fasting plasma glucose, triglycerides, and high-density lipoprotein cholesterol and with increased odds of hypertension, impaired fasting glucose, diabetes mellitus, and metabolic syndrome (P range < 0.01). In women, relations between VAT and risk factors were consistently stronger than in men. However, VAT was more strongly correlated with most metabolic risk factors than was SAT. For example, among women and men, both SAT and VAT were associated with increased odds of metabolic syndrome. In women, the odds ratio (OR) of metabolic syndrome per 1-standard deviation increase in VAT (OR, 4.7) was stronger than that for SAT (OR, 3.0; P for difference between SAT and VAT < 0.0001); similar differences were noted for men (OR for VAT, 4.2; OR for SAT, 2.5). Furthermore, VAT but not SAT contributed significantly to risk factor variation after adjustment for body mass index and waist circumference (P < or = 0.01). Among overweight and obese individuals, the prevalence of hypertension, impaired fasting glucose, and metabolic syndrome increased linearly and significantly across increasing VAT quartiles. Heritability values for SAT and VAT were 57% and 36%, respectively. Although both SAT and VAT are correlated with metabolic risk factors, VAT remains more strongly associated with an adverse metabolic risk profile even after accounting for standard anthropometric indexes. Our findings are consistent with the hypothesized role of visceral fat as a unique, pathogenic fat depot. Measurement of VAT may provide a more complete understanding of metabolic risk associated with variation in fat distribution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of lipolysis in adipocytes.

            Lipolysis of white adipose tissue triacylglycerol stores results in the liberation of glycerol and nonesterified fatty acids that are released into the vasculature for use by other organs as energy substrates. In response to changes in nutritional state, lipolysis rates are precisely regulated through hormonal and biochemical signals. These signals modulate the activity of lipolytic enzymes and accessory proteins, allowing for maximal responsiveness of adipose tissue to changes in energy requirements and availability. Recently, a number of novel adipocyte triacylglyceride lipases have been identified, including desnutrin/ATGL, greatly expanding our understanding of adipocyte lipolysis. We have also begun to better appreciate the role of a number of nonenzymatic proteins that are critical to triacylglyceride breakdown. This review provides an overview of key mediators of lipolysis and the regulation of this process by changes in nutritional status and nutrient intakes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cardiovascular and Metabolic Heterogeneity of Obesity

              The prevalence of obesity has increased globally over the last 2 decades. Although the body mass index has been a convenient and simple index of obesity at the population level, studies have shown that obesity defined by body mass index alone is a remarkably heterogeneous condition with varying cardiovascular and metabolic manifestations across individuals. Adipose tissue is an exquisitely active metabolic organ engaged in cross-talk between various systems; perturbation of adipose tissue results in a pathological response to positive caloric balance in susceptible individuals that directly and indirectly contributes to cardiovascular and metabolic disease. Inadequate subcutaneous adipose tissue expansion in the face of dietary triglycerides leads to visceral and ectopic fat deposition, inflammatory/adipokine dysregulation, and insulin resistance. Conversely, preferential fat storage in the lower body depot may act as a metabolic buffer and protect other tissues from lipotoxicity caused by lipid overflow and ectopic fat. Translational, epidemiological, and clinical studies over the past 30 years have clearly demonstrated a strong link between visceral and ectopic fat and the development of a clinical syndrome characterized by atherogenic dyslipidemia, hyperinsulinemia/glucose intolerance, hypertension, atherosclerosis, and adverse cardiac remodeling/heart failure. This relationship is even more nuanced when clinical entities such as metabolically healthy obesity phenotype and the obesity paradox are considered. Although it is clear that the accumulation of visceral/ectopic fat is a major contributor to cardiovascular and metabolic risk above and beyond the body mass index, implementation of fat distribution assessment into clinical practice remains a challenge. Anthropometric indexes of obesity are easily implemented, but newer imaging-based methods offer improved sensitivity and specificity for measuring specific depots. Lifestyle, pharmacological, and surgical interventions allow a multidisciplinary approach to overweight/obesity that may improve outcomes and align with a public health message to combat the growing epidemic of obesity worldwide and to build healthier lives free of cardiovascular diseases.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                13 July 2018
                July 2018
                : 19
                : 7
                : 2034
                Affiliations
                [1 ]Liver Research Unit, Medica Sur Clinic & Foundation, 14050 Mexico City, Mexico; vaniacesar_ram55@ 123456hotmail.com (V.C.C.-R.); oscar.tuzos@ 123456hotmail.com (O.L.R.-P.)
                [2 ]Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; jphwang@ 123456mdanderson.org
                [3 ]Department of Gastroenterology, National Medical Center “20 Noviembre”, 03229 Mexico City, Mexico; betbarranco@ 123456yahoo.com.mx
                [4 ]Obesity Clinic, General Hospital “Dr. Manuel Gea González”, 14080 Mexico City, Mexico; jacquiemex2@ 123456yahoo.com.mx
                Author notes
                Author information
                https://orcid.org/0000-0001-5257-8048
                https://orcid.org/0000-0002-5149-9636
                https://orcid.org/0000-0002-5808-3705
                Article
                ijms-19-02034
                10.3390/ijms19072034
                6073816
                30011790
                26982b65-f10b-410a-a9d2-b67bb0e32e4c
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 06 June 2018
                : 11 July 2018
                Categories
                Review

                Molecular biology
                nonalcoholic steatohepatitis,liver fibrosis,hepatic lipotoxicity
                Molecular biology
                nonalcoholic steatohepatitis, liver fibrosis, hepatic lipotoxicity

                Comments

                Comment on this article