68
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Secreted NS1 of Dengue Virus Attaches to the Surface of Cells via Interactions with Heparan Sulfate and Chondroitin Sulfate E

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dengue virus (DENV) nonstructural protein-1 (NS1) is a secreted glycoprotein that is absent from viral particles but accumulates in the supernatant and on the plasma membrane of cells during infection. Immune recognition of cell surface NS1 on endothelial cells has been hypothesized as a mechanism for the vascular leakage that occurs during severe DENV infection. However, it has remained unclear how NS1 becomes associated with the plasma membrane, as it contains no membrane-spanning sequence motif. Using flow cytometric and ELISA-based binding assays and mutant cell lines lacking selective glycosaminoglycans, we show that soluble NS1 binds back to the surface of uninfected cells primarily via interactions with heparan sulfate and chondroitin sulfate E. DENV NS1 binds directly to the surface of many types of epithelial and mesenchymal cells yet attaches poorly to most peripheral blood cells. Moreover, DENV NS1 preferentially binds to cultured human microvascular compared to aortic or umbilical cord vein endothelial cells. This binding specificity was confirmed in situ as DENV NS1 bound to lung and liver but not intestine or brain endothelium of mouse tissues. Differential binding of soluble NS1 by tissue endothelium and subsequent recognition by anti-NS1 antibodies could contribute to the selective vascular leakage syndrome that occurs during severe secondary DENV infection.

          Author Summary

          Dengue virus (DENV) is a mosquito-transmitted virus that infects humans and has become a global emerging infectious disease threat. Four serotypes of DENV exist, and the most severe cases are associated with secondary infection with a different virus serotype. Clinical deterioration is characterized by bleeding and selective vascular leakage from endothelium in specific tissue sites. An increased understanding of how DENV proteins contribute to this phenotype is vital to developing novel vaccines and identifying individuals at risk for severe disease. DENV nonstructural protein-1 (NS1) is one such protein: during infection, it is secreted and accumulates in the supernatant and on the surface of cells. In this study, we demonstrate that soluble DENV NS1 attaches to subsets of cells, including some but not all endothelial cells, primarily via an interaction with specific glycosaminoglycans (heparan sulfate and chondroitin sulfate E). This was confirmed in tissue binding studies as DENV NS1 bound to lung and liver but not intestine or brain endothelium. Our findings suggest that the selective vascular leakage that occurs in severe DENV infection may be related to the relative ability of endothelial cells in different tissues to bind soluble NS1 and to be targeted by cross-reactive anti-NS1 antibodies during secondary infection.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Heparan sulphate proteoglycans fine-tune mammalian physiology.

          Heparan sulphate proteoglycans reside on the plasma membrane of all animal cells studied so far and are a major component of extracellular matrices. Studies of model organisms and human diseases have demonstrated their importance in development and normal physiology. A recurrent theme is the electrostatic interaction of the heparan sulphate chains with protein ligands, which affects metabolism, transport, information transfer, support and regulation in all organ systems. The importance of these interactions is exemplified by phenotypic studies of mice and humans bearing mutations in the core proteins or the biosynthetic enzymes responsible for assembling the heparan sulphate chains.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Order out of chaos: assembly of ligand binding sites in heparan sulfate.

            Virtually every cell type in metazoan organisms produces heparan sulfate. These complex polysaccharides provide docking sites for numerous protein ligands and receptors involved in diverse biological processes, including growth control, signal transduction, cell adhesion, hemostasis, and lipid metabolism. The binding sites consist of relatively small tracts of variably sulfated glucosamine and uronic acid residues in specific arrangements. Their formation occurs in a tissue-specific fashion, generated by the action of a large family of enzymes involved in nucleotide sugar metabolism, polymer formation (glycosyltransferases), and chain processing (sulfotransferases and an epimerase). New insights into the specificity and organization of the biosynthetic apparatus have emerged from genetic studies of cultured cells, nematodes, fruit flies, zebrafish, rodents, and humans. This review covers recent developments in the field and provides a resource for investigators interested in the incredible diversity and specificity of this process.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pathogenesis of dengue: challenges to molecular biology.

              Dengue viruses occur as four antigenically related but distinct serotypes transmitted to humans by Aedes aegypti mosquitoes. These viruses generally cause a benign syndrome, dengue fever, in the American and African tropics, and a severe syndrome, dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS), in Southeast Asian children. This severe syndrome, which recently has also been identified in children infected with the virus in Puerto Rico, is characterized by increased vascular permeability and abnormal hemostasis. It occurs in infants less than 1 year of age born to dengue-immune mothers and in children 1 year and older who are immune to one serotype of dengue virus and are experiencing infection with a second serotype. Dengue viruses replicate in cells of mononuclear phagocyte lineage, and subneutralizing concentrations of dengue antibody enhance dengue virus infection in these cells. This antibody-dependent enhancement of infection regulates dengue disease in human beings, although disease severity may also be controlled genetically, possibly by permitting and restricting the growth of virus in monocytes. Monoclonal antibodies show heterogeneous distribution of antigenic epitopes on dengue viruses. These epitopes serve to regulate disease: when antibodies to shared antigens partially neutralize heterotypic virus, infection and disease are dampened; enhancing antibodies alone result in heightened disease response. Further knowledge of the structure of dengue genomes should permit rapid advances in understanding the pathogenetic mechanisms of dengue.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                ppat
                plpa
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                November 2007
                30 November 2007
                : 3
                : 11
                : e183
                Affiliations
                [1 ] Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
                [2 ] Medical Molecular Biology Unit, Office for Research and Development, Mahidol University, Bangkok, Thailand
                [3 ] Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
                [4 ] Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
                [5 ] Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology BIOTEC, National Science and Technology Development Agency NSTDA, Pathumthani, Thailand
                [6 ] Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
                [7 ] Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
                Scripps Research Institute, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: diamond@ 123456borcim.wustl.edu
                Article
                07-PLPA-RA-0498R3 plpa-03-11-22
                10.1371/journal.ppat.0030183
                2092380
                18052531
                26163a93-ddce-4fe5-b617-887592a846ce
                Copyright: © 2007 Avirutnan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 30 July 2007
                : 19 October 2007
                Page count
                Pages: 15
                Categories
                Research Article
                Immunology
                Infectious Diseases
                Microbiology
                Virology
                Viruses
                In Vitro
                Eukaryotes
                Mus (Mouse)
                Homo (Human)
                Custom metadata
                Avirutnan P, Zhang L, Punyadee N, Manuyakorn A, Puttikhunt C, et al. (2007) Secreted NS1 of dengue virus attaches to the surface of cells via interactions with heparan sulfate and chondroitin sulfate E. PLoS Pathog 3(11): e183. doi: 10.1371/journal.ppat.0030183

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article