We recently reported that the Ins2 Akita mouse is a good model for late-onset diabetic retinopathy. Here, we investigated the effect of miR200-b, a potential anti-angiogenic factor, on VEGF receptor 2 (VEGFR-2) expression and to determine the underlying angiogenic response in mouse endothelial cells, and in retinas from aged Ins2 Akita mice. MiR200-b and its native flanking sequences were amplified and cloned into a pCAG-eGFP vector directed by the ubiquitous CAG promoter (namely pCAG-miR200-b-IRES-eGFP). The plasmid was compacted by CK30PEG10K into DNA nanoparticles (NPs) for in vivo delivery. Murine endothelial cell line, SVEC4-10, was first transfected with the plasmid. The mRNA levels of VEGF and VEGFR-2 were quantified by qRT-PCR and showed significant reduction in message expression compared with lipofectamine-transfected cells. Transfection of miR200-b suppressed the migration of SVEC4-10 cells. There was a significant inverse correlation between the level of expression of miR200-b and VEGFR-2. Intravitreal injection of miR200-b DNA NPs significantly reduced protein levels of VEGFR-2 as revealed by western blot and markedly suppressed angiogenesis as evaluated by fundus imaging in aged Ins2 Akita mice even after 3 months of post-injection. These findings suggest that NP-mediated miR200-b delivery has negatively regulated VEGFR-2 expression in vivo.