Restoration of iodine incorporation (redifferentiation) by MAPK inhibition was achieved in previously radioiodine-refractory, unresectable thyroid carcinoma (RR-TC). However, results were unsatisfactory in BRAF V600E-mutant (BRAF-MUT) RR-TC. Here we assess safety and efficacy of redifferentiation therapy through genotype-guided MAPK-modulation in patients with BRAF-MUT or wildtype (BRAF-WT) RR-TC.
In this prospective single-center, two-arm phase II study, patients received trametinib (BRAF-WT) or trametinib + dabrafenib (BRAF-MUT) for 21 ± 3 days. Redifferentiation was assessed by 123I-scintigraphy. In case of restored radioiodine uptake, 124I-guided 131I therapy was performed. Primary endpoint was the redifferentiation rate. Secondary endpoints were treatment response (thyroglobulin, RECIST 1.1) and safety. Parameters predicting successful redifferentiation were assessed using a receiver operating characteristic analysis and Youden J statistic.
Redifferentiation was achieved in 7 of 20 (35%) patients, 2 of 6 (33%) in the BRAF-MUT and 5 of 14 (36%) in the BRAF-WT arm. Patients received a mean (range) activity of 300.0 (273.0–421.6) mCi for 131I therapy. Any thyroglobulin decline was seen in 57% (4/7) of the patients, RECIST 1.1 stable/partial response/progressive disease in 71% (5/7)/14% (1/7)/14% (1/7). Peak standardized uptake value (SUV peak) < 10 on 2[ 18F]fluoro-2-deoxy-D-glucose (FDG)-PET was associated with successful redifferentiation ( P = 0.01). Transient pyrexia (grade 3) and rash (grade 4) were noted in one patient each.
Genotype-guided MAPK inhibition was safe and resulted in successful redifferentiation in about one third of patients in each arm. Subsequent 131I therapy led to a thyroglobulin (Tg) decline in more than half of the treated patients. Low tumor glycolytic rate as assessed by FDG-PET is predictive of redifferentiation success.