4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Overexpression of GmUBC9 Gene Enhances Plant Drought Resistance and Affects Flowering Time via Histone H2B Monoubiquitination

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ubiquitylation is a form of post-translational modification of proteins that can alter localization, functionality, degradation, or transcriptional activity within a cell. E2 ubiquitin-conjugating enzyme (UBC) and E3 ubiquitin ligases are the primary determinants of substrate specificity in the context of ubiquitin conjugation. Multiubiquitination modifies target proteins for 26S proteasome degradation, while monoubiquitination controls protein activation and localization. At present, research on the monoubiquitination, especially histone monoubiquitination, has mostly focused on model plants with relatively few on crop species. In this study, we identified 91 UBC-like genes in soybean. The chromosomal localization, phylogenetic relationships, gene structures, and putative cis-acting elements were evaluated. Furthermore, the tissue-specific expression patterns of UBC Class I genes under drought stress were also investigated. Among Class I genes, GmUBC9 induction in response to drought stress was evident, and so this gene was selected for further analysis. GmUBC9 localized to the nucleus and endoplasmic reticulum. The overexpression of GmUBC9 in Arabidopsis led to enhanced tolerance for drought conditions across a range of stages of development, while overexpression in soybean hairy roots similarly led to improvements in tolerance for drought conditions, increased proline content, and reduced MDA content in soybean seedlings compared to wild type plants. HISTONE MONOUBIQUITINATION 2 (HUB2), an E3-like protein involved in histone H2B ubiquitylation (H2Bub1), was found to interact with GmUBC9 through Y2H analysis and BiFC assays in Arabidopsis and soybean. Under drought conditions, the level of H2Bub1 increased, and transcription of drought response genes was activated in GmUBC9 transgenic Arabidopsis and soybean. In addition, GmUBC9 transgenic Arabidopsis and soybean showed a late-flowering phenotype and had increased expression levels of the flowering related genes FLC and MAF4. These findings indicate that GmUBC9 is important for drought stress response and regulation of flowering time in soybean.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO.

          The RAD6 pathway is central to post-replicative DNA repair in eukaryotic cells; however, the machinery and its regulation remain poorly understood. Two principal elements of this pathway are the ubiquitin-conjugating enzymes RAD6 and the MMS2-UBC13 heterodimer, which are recruited to chromatin by the RING-finger proteins RAD18 and RAD5, respectively. Here we show that UBC9, a small ubiquitin-related modifier (SUMO)-conjugating enzyme, is also affiliated with this pathway and that proliferating cell nuclear antigen (PCNA) -- a DNA-polymerase sliding clamp involved in DNA synthesis and repair -- is a substrate. PCNA is mono-ubiquitinated through RAD6 and RAD18, modified by lysine-63-linked multi-ubiquitination--which additionally requires MMS2, UBC13 and RAD5--and is conjugated to SUMO by UBC9. All three modifications affect the same lysine residue of PCNA, suggesting that they label PCNA for alternative functions. We demonstrate that these modifications differentially affect resistance to DNA damage, and that damage-induced PCNA ubiquitination is elementary for DNA repair and occurs at the same conserved residue in yeast and humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The ubiquitin 26S proteasome proteolytic pathway.

            Much of plant physiology, growth, and development is controlled by the selective removal of short-lived regulatory proteins. One important proteolytic pathway involves the small protein ubiquitin (Ub) and the 26S proteasome, a 2-MDa protease complex. In this pathway, Ub is attached to proteins destined for degradation; the resulting Ub-protein conjugates are then recognized and catabolized by the 26S proteasome. This review describes our current understanding of the pathway in plants at the biochemical, genomic, and genetic levels, using Arabidopsis thaliana as the model. Collectively, these analyses show that the Ub/26S proteasome pathway is one of the most elaborate regulatory mechanisms in plants. The genome of Arabidopsis encodes more than 1400 (or >5% of the proteome) pathway components that can be connected to almost all aspects of its biology. Most pathway components participate in the Ub-ligation reactions that choose with exquisite specificity which proteins should be ubiquitinated. What remains to be determined is the identity of the targets, which may number in the thousands in plants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression.

              It is more evident now than ever that nucleosomes can transmit epigenetic information from one cell generation to the next. It has been demonstrated during the past decade that the posttranslational modifications of histone proteins within the chromosome impact chromatin structure, gene transcription, and epigenetic information. Multiple modifications decorate each histone tail within the nucleosome, including some amino acids that can be modified in several different ways. Covalent modifications of histone tails known thus far include acetylation, phosphorylation, sumoylation, ubiquitination, and methylation. A large body of experimental evidence compiled during the past several years has demonstrated the impact of histone acetylation on transcriptional control. Although histone modification by methylation and ubiquitination was discovered long ago, it was only recently that functional roles for these modifications in transcriptional regulation began to surface. Highlighted in this review are the recent biochemical, molecular, cellular, and physiological functions of histone methylation and ubiquitination involved in the regulation of gene expression as determined by a combination of enzymological, structural, and genetic methodologies.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                04 September 2020
                2020
                : 11
                : 555794
                Affiliations
                [1] 1 College of Life Sciences, Jilin Agricultural University , Changchun, China
                [2] 2 Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture , Beijing, China
                Author notes

                Edited by: Omar Borsani, Universidad de la República, Uruguay

                Reviewed by: Victor Aguilar-Hernández, National Council of Science and Technology (CONACYT), Mexico; Alexandre Berr, UPR2357 Institut de biologie moléculaire des plantes (IBMP), France

                *Correspondence: Ming Chen, chenming02@ 123456caas.cn ; Hai-Yan Li, hyli99@ 123456163.com

                †These authors have contributed equally to this work

                This article was submitted to Plant Abiotic Stress, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2020.555794
                7498670
                33013972
                25d1de81-e09e-4425-a8ce-edef8185adbb
                Copyright © 2020 Chen, Tang, Zhou, Xu, Chen, Ma, Chen and Li

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 May 2020
                : 13 August 2020
                Page count
                Figures: 12, Tables: 0, Equations: 0, References: 74, Pages: 21, Words: 9379
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                soybean,ubiquitin-conjugating enzyme,histone monoubiquitination,drought tolerance,regulation of flowering

                Comments

                Comment on this article