4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Overexpression of GmGASA32 promoted soybean height by interacting with GmCDC25

      other
      a , a , a , a , b
      Plant Signaling & Behavior
      Taylor & Francis
      GmGASA protein, gibberellin, nuclear localization, BiFC, GmCDC25

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          GmGASA is the GASA gibberellin regulated cysteine-rich protein family. The expression of GmGASA is up-regulated by gibberellin, which is the longest plant hormone in plants playing vital roles in plant development. However, very few reports explaining the direct regulation of downstream genes by GASA gene are available. In the current study, the GmGASA32, a member of the GASA family affecting soybean height was identified. In the early stage, preliminary verification of the response of GmGASA32 to gibberellin through phenotypic experiment was done. The promoter activity analysis confirmed that GmGASA32 was induced by gibberellin. Subcellular localization showed that GmGASA32-GFP fusion protein enriched in the nucleus after gibberellin treatment. In order to confirm the function of GmGASA32 in the nucleus, we confirmed that the GASA domain in the C terminal of GmGASA32 can interact with GmCDC25 (cell cycle-associated protein) through the bimolecular fluorescence complementation (BiFC) assay.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          GASA4, one of the 14-member Arabidopsis GASA family of small polypeptides, regulates flowering and seed development.

          Members of the plant-specific gibberellic acid-stimulated Arabidopsis (GASA) gene family play roles in hormone response, defense and development. We have identified six new Arabidopsis GASA genes, bringing the total number of family members to 14. Here we show that these genes all encode small polypeptides that share the common structural features of an N-terminal putative signal sequence, a highly divergent intermediate region and a conserved 60 amino acid C-terminal domain containing 12 conserved cysteine residues. Analysis of promoter::GUS (beta-glucuronidase) transgenic plants representing six different GASA loci reveals that the promoters are activated in a variety of stage- and tissue-specific patterns during development, indicating that the GASA genes are involved in diverse processes. Characterization of GASA4 shows that the promoter is active in the shoot apex region, developing flowers and developing embryos. Phenotypic analyses of GASA4 loss-of-function and gain-of-function lines indicate that GASA4 regulates floral meristem identity and also positively affects both seed size and total seed yield.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Arabidopsis cysteine-rich protein GASA4 promotes GA responses and exhibits redox activity in bacteria and in planta.

            Although the gibberellin (GA) signaling pathway has been elucidated, very little is known about the steps linking first transcriptional activation to physiological responses. Among the few identified GA-induced genes are the plant-specific GAST1-like genes, which encode small proteins with a conserved cysteine-rich domain. The role of these proteins in plant development and GA responses is not yet clear. The Arabidopsis GAST1-like gene family consists of 14 members, GASA1-14. Here we show that over-expression of the GA-induced GASA4 gene in Arabidopsis promoted GA responses such as flowering and seed germination. Suppression of several GASA genes using synthetic microRNA (miR(GASA) ) also promoted seed germination. This was probably caused by suppression of GASA5, which acts as a repressor of GA responses. Previously, we proposed that GAST1-like proteins are involved in redox reactions via their cysteine-rich domain. The results of this study support this hypothesis, as over-expression of GASA4 suppressed ROS accumulation and the transgenic seeds were partially resistant to the NO donor sodium nitroprusside (SNP). Moreover, Escherichia coli expressing intact GASA4 or a truncated version containing only the cysteine-rich domain were resistant to SNP. Mutated GASA4, in which conserved cysteines were replaced by alanines, lost its redox activity and the ability to promote GA responses, suggesting that the two functions are linked. We propose that GA induces some GAST1-like genes and suppresses others to regulate its own responses. We also suggest that the encoded proteins regulate the redox status of specific components to promote or suppress these responses. © 2010 The Authors. The Plant Journal © 2010 Blackwell Publishing Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gibberellic Acid-Stimulated Arabidopsis6 Serves as an Integrator of Gibberellin, Abscisic Acid, and Glucose Signaling during Seed Germination in Arabidopsis.

              The DELLA protein REPRESSOR OF ga1-3-LIKE2 (RGL2) plays an important role in seed germination under different conditions through a number of transcription factors. However, the functions of the structural genes associated with RGL2-regulated germination are less defined. Here, we report the role of an Arabidopsis (Arabidopsis thaliana) cell wall-localized protein, Gibberellic Acid-Stimulated Arabidopsis6 (AtGASA6), in functionally linking RGL2 and a cell wall loosening expansin protein (Arabidopsis expansin A1 [AtEXPA1]), resulting in the control of embryonic axis elongation and seed germination. AtGASA6-overexpressing seeds showed precocious germination, whereas transfer DNA and RNA interference mutant seeds displayed delayed seed germination under abscisic acid, paclobutrazol, and glucose (Glc) stress conditions. The differences in germination rates resulted from corresponding variation in cell elongation in the hypocotyl-radicle transition region of the embryonic axis. AtGASA6 was down-regulated by RGL2, GLUCOSE INSENSITIVE2, and ABSCISIC ACID-INSENSITIVE5 genes, and loss of AtGASA6 expression in the gasa6 mutant reversed the insensitivity shown by the rgl2 mutant to paclobutrazol and the gin2 mutant to Glc-induced stress, suggesting that it is involved in regulating both the gibberellin and Glc signaling pathways. Furthermore, it was found that the promotion of seed germination and length of embryonic axis by AtGASA6 resulted from a promotion of cell elongation at the embryonic axis mediated by AtEXPA1. Taken together, the data indicate that AtGASA6 links RGL2 and AtEXPA1 functions and plays a role as an integrator of gibberellin, abscisic acid, and Glc signaling, resulting in the regulation of seed germination through a promotion of cell elongation.
                Bookmark

                Author and article information

                Journal
                Plant Signal Behav
                Plant Signal Behav
                Plant Signaling & Behavior
                Taylor & Francis
                1559-2316
                1559-2324
                8 December 2020
                2021
                8 December 2020
                : 16
                : 2
                : 1855017
                Affiliations
                [a ]College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Jilin Agricultural University; , Changchun, Jilin, China (130118)
                [b ]College of Tropical Crops, Hainan University; , Haikou, Hainan, China (570228)
                Author notes
                CONTACT Haiyan Li hyli@ 123456hainanu.edu.cn College of Tropical Crops, Hainan University; , Haikou, Hainan, China (570228).
                Author information
                https://orcid.org/0000-0002-9943-0806
                Article
                1855017
                10.1080/15592324.2020.1855017
                7849675
                33289607
                11894636-03ab-4ef1-94e1-c2425d19ba41
                © 2020 The Author(s). Published with license by Taylor & Francis Group, LLC.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License ( http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

                History
                Page count
                Figures: 2, References: 20, Pages: 5
                Categories
                Other
                Short Communication

                Plant science & Botany
                gmgasa protein,gibberellin,nuclear localization,bifc,gmcdc25
                Plant science & Botany
                gmgasa protein, gibberellin, nuclear localization, bifc, gmcdc25

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content318

                Cited by5

                Most referenced authors207