3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Systematic Comparison of Heatmapping Techniques in Deep Learning in the Context of Diabetic Retinopathy Lesion Detection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Heatmapping techniques can support explainability of deep learning (DL) predictions in medical image analysis. However, individual techniques have been mainly applied in a descriptive way without an objective and systematic evaluation. We investigated comparative performances using diabetic retinopathy lesion detection as a benchmark task.

          Methods

          The Indian Diabetic Retinopathy Image Dataset (IDRiD) publicly available database contains fundus images of diabetes patients with pixel level annotations of diabetic retinopathy (DR) lesions, the ground truth for this study. Three in advance trained DL models (ResNet50, VGG16 or InceptionV3) were used for DR detection in these images. Next, explainability was visualized with each of the 10 most used heatmapping techniques. The quantitative correspondence between the output of a heatmap and the ground truth was evaluated with the Explainability Consistency Score (ECS), a metric between 0 and 1, developed for this comparative task.

          Results

          In case of the overall DR lesions detection, the ECS ranged from 0.21 to 0.51 for all model/heatmapping combinations. The highest score was for VGG16+Grad-CAM (ECS = 0.51; 95% confidence interval [CI]: [0.46; 0.55]). For individual lesions, VGG16+Grad-CAM performed best on hemorrhages and hard exudates. ResNet50+SmoothGrad performed best for soft exudates and ResNet50+Guided Backpropagation performed best for microaneurysms.

          Conclusions

          Our empirical evaluation on the IDRiD database demonstrated that the combination DL model/heatmapping affects explainability when considering common DR lesions. Our approach found considerable disagreement between regions highlighted by heatmaps and expert annotations.

          Translational Relevance

          We warrant a more systematic investigation and analysis of heatmaps for reliable explanation of image-based predictions of deep learning models.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: not found
          • Article: not found

          ImageNet Large Scale Visual Recognition Challenge

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dermatologist-level classification of skin cancer with deep neural networks

            Skin cancer, the most common human malignancy, is primarily diagnosed visually, beginning with an initial clinical screening and followed potentially by dermoscopic analysis, a biopsy and histopathological examination. Automated classification of skin lesions using images is a challenging task owing to the fine-grained variability in the appearance of skin lesions. Deep convolutional neural networks (CNNs) show potential for general and highly variable tasks across many fine-grained object categories. Here we demonstrate classification of skin lesions using a single CNN, trained end-to-end from images directly, using only pixels and disease labels as inputs. We train a CNN using a dataset of 129,450 clinical images—two orders of magnitude larger than previous datasets—consisting of 2,032 different diseases. We test its performance against 21 board-certified dermatologists on biopsy-proven clinical images with two critical binary classification use cases: keratinocyte carcinomas versus benign seborrheic keratoses; and malignant melanomas versus benign nevi. The first case represents the identification of the most common cancers, the second represents the identification of the deadliest skin cancer. The CNN achieves performance on par with all tested experts across both tasks, demonstrating an artificial intelligence capable of classifying skin cancer with a level of competence comparable to dermatologists. Outfitted with deep neural networks, mobile devices can potentially extend the reach of dermatologists outside of the clinic. It is projected that 6.3 billion smartphone subscriptions will exist by the year 2021 (ref. 13) and can therefore potentially provide low-cost universal access to vital diagnostic care.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Global Prevalence and Major Risk Factors of Diabetic Retinopathy

              OBJECTIVE To examine the global prevalence and major risk factors for diabetic retinopathy (DR) and vision-threatening diabetic retinopathy (VTDR) among people with diabetes. RESEARCH DESIGN AND METHODS A pooled analysis using individual participant data from population-based studies around the world was performed. A systematic literature review was conducted to identify all population-based studies in general populations or individuals with diabetes who had ascertained DR from retinal photographs. Studies provided data for DR end points, including any DR, proliferative DR, diabetic macular edema, and VTDR, and also major systemic risk factors. Pooled prevalence estimates were directly age-standardized to the 2010 World Diabetes Population aged 20–79 years. RESULTS A total of 35 studies (1980–2008) provided data from 22,896 individuals with diabetes. The overall prevalence was 34.6% (95% CI 34.5–34.8) for any DR, 6.96% (6.87–7.04) for proliferative DR, 6.81% (6.74–6.89) for diabetic macular edema, and 10.2% (10.1–10.3) for VTDR. All DR prevalence end points increased with diabetes duration, hemoglobin A1c, and blood pressure levels and were higher in people with type 1 compared with type 2 diabetes. CONCLUSIONS There are approximately 93 million people with DR, 17 million with proliferative DR, 21 million with diabetic macular edema, and 28 million with VTDR worldwide. Longer diabetes duration and poorer glycemic and blood pressure control are strongly associated with DR. These data highlight the substantial worldwide public health burden of DR and the importance of modifiable risk factors in its occurrence. This study is limited by data pooled from studies at different time points, with different methodologies and population characteristics.
                Bookmark

                Author and article information

                Journal
                Transl Vis Sci Technol
                Transl Vis Sci Technol
                tvst
                TVST
                Translational Vision Science & Technology
                The Association for Research in Vision and Ophthalmology
                2164-2591
                29 December 2020
                December 2020
                : 9
                : 2
                : 64
                Affiliations
                [1 ]VITO NV, Unit Health, Mol, Belgium
                [2 ]Hasselt University, Hasselt, Belgium
                [3 ]University of Antwerp, Wilrijk, Belgium
                Author notes
                [* ] Correspondence: Patrick De Boever, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium. e-mail: patrick.deboever@ 123456uantwerpen.be
                Article
                TVST-20-2643
                10.1167/tvst.9.2.64
                7774113
                33403156
                25458a62-5855-4ed2-a2a1-fbf6692045c3
                Copyright 2020 The Authors

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 31 October 2020
                : 23 May 2020
                Page count
                Pages: 10
                Categories
                Special Issue
                Special Issue

                deep learning,heatmap,explainability,diabetic retinopathy

                Comments

                Comment on this article