Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High-throughput single-cell whole-genome amplification through centrifugal emulsification and eMDA

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Single-cell whole-genome sequencing (scWGS) is mainly used to probe intercellular genomic variations, focusing on the copy number variations or alterations and the single-nucleotide variations (SNVs) occurring within single cells. Single-cell whole-genome amplification (scWGA) needs to be applied before scWGS but is challenging due to the low copy number of DNA. Besides, many genomic variations are rare within a population of cells, so the throughput of currently available scWGA methods is far from satisfactory. Here, we integrate a one-step micro-capillary array (MiCA)-based centrifugal droplet generation technique with emulsion multiple displacement amplification (eMDA) and demonstrate a high-throughput scWGA method, MiCA-eMDA. MiCA-eMDA increases the single-run throughput of scWGA to a few dozen, and enables the assessment of copy number variations and alterations at 50-kb resolution. Downstream target enrichment further enables the detection of SNVs with 20% allele drop-out.

          Abstract

          Yusi Fu, Fangli Zhang et al. integrate a one-step microcapillary array with emulsion multiple displacement amplification to obtain a high-throughput single-cell whole-genome amplification method. Their method enables copy number assessment at a resolution of 50 kb.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing.

          Mammalian pre-implantation development is a complex process involving dramatic changes in the transcriptional architecture. We report here a comprehensive analysis of transcriptome dynamics from oocyte to morula in both human and mouse embryos, using single-cell RNA sequencing. Based on single-nucleotide variants in human blastomere messenger RNAs and paternal-specific single-nucleotide polymorphisms, we identify novel stage-specific monoallelic expression patterns for a significant portion of polymorphic gene transcripts (25 to 53%). By weighted gene co-expression network analysis, we find that each developmental stage can be delineated concisely by a small number of functional modules of co-expressed genes. This result indicates a sequential order of transcriptional changes in pathways of cell cycle, gene regulation, translation and metabolism, acting in a step-wise fashion from cleavage to morula. Cross-species comparisons with mouse pre-implantation embryos reveal that the majority of human stage-specific modules (7 out of 9) are notably preserved, but developmental specificity and timing differ between human and mouse. Furthermore, we identify conserved key members (or hub genes) of the human and mouse networks. These genes represent novel candidates that are likely to be key in driving mammalian pre-implantation development. Together, the results provide a valuable resource to dissect gene regulatory mechanisms underlying progressive development of early mammalian embryos.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification.

            We describe a simple method of using rolling circle amplification to amplify vector DNA such as M13 or plasmid DNA from single colonies or plaques. Using random primers and phi29 DNA polymerase, circular DNA templates can be amplified 10,000-fold in a few hours. This procedure removes the need for lengthy growth periods and traditional DNA isolation methods. Reaction products can be used directly for DNA sequencing after phosphatase treatment to inactivate unincorporated nucleotides. Amplified products can also be used for in vitro cloning, library construction, and other molecular biology applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst.

              Three distinct cell types are present within the 64-cell stage mouse blastocyst. We have investigated cellular development up to this stage using single-cell expression analysis of more than 500 cells. The 48 genes analyzed were selected in part based on a whole-embryo analysis of more than 800 transcription factors. We show that in the morula, blastomeres coexpress transcription factors specific to different lineages, but by the 64-cell stage three cell types can be clearly distinguished according to their quantitative expression profiles. We identify Id2 and Sox2 as the earliest markers of outer and inner cells, respectively. This is followed by an inverse correlation in expression for the receptor-ligand pair Fgfr2/Fgf4 in the early inner cell mass. Position and signaling events appear to precede the maturation of the transcriptional program. These results illustrate the power of single-cell expression analysis to provide insight into developmental mechanisms. The technique should be widely applicable to other biological systems. Copyright 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                yanyi@pku.edu.cn
                jianbinwang@tsinghua.edu.cn
                Journal
                Commun Biol
                Commun Biol
                Communications Biology
                Nature Publishing Group UK (London )
                2399-3642
                29 April 2019
                29 April 2019
                2019
                : 2
                : 147
                Affiliations
                [1 ]ISNI 0000 0001 2256 9319, GRID grid.11135.37, Beijing Advanced Innovation Center for Genomics (ICG), Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, College of Engineering, and Peking-Tsinghua Center for Life Sciences, , Peking University, ; Beijing, 100871 China
                [2 ]ISNI 0000 0001 0662 3178, GRID grid.12527.33, School of Life Sciences, and Tsinghua-Peking Center for Life Sciences, , Tsinghua University, ; Beijing, 100084 China
                Author information
                http://orcid.org/0000-0002-7297-1266
                http://orcid.org/0000-0001-6725-7925
                Article
                401
                10.1038/s42003-019-0401-y
                6488574
                31044172
                2543c881-4028-4dc6-aa0a-40be2bfff742
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 12 October 2018
                : 20 March 2019
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100001809, National Natural Science Foundation of China (National Science Foundation of China);
                Award ID: 21525521
                Award ID: 21675098
                Award Recipient :
                Funded by: FundRef https://doi.org/10.13039/501100002855, Ministry of Science and Technology of the People's Republic of China (Chinese Ministry of Science and Technology);
                Award ID: 2018YFA0108104
                Award ID: 2016YFC0900100
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                dna sequencing,dna
                dna sequencing, dna

                Comments

                Comment on this article