23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Considerations preliminary to the application of early and immediate loading protocols in dental implantology.

      Clinical Oral Implants Research
      Clinical Protocols, Dental Implantation, Endosseous, methods, Dental Prosthesis Design, Denture, Overlay, Denture, Partial, Fixed, Humans, Osseointegration, Patient Selection, Time Factors, Weight-Bearing, Wound Healing

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In oral implantology, a 3-6 month stress-free healing period is presently accepted as a prerequisite to achieve bone apposition without interposition of a fibrous scar tissue. This protocol was introduced by Brånemark and co-workers in 1977. The aim of the present paper is to review the reasons that led Brånemark and collaborators to require long delayed loading periods. It is shown that the requirement for long delayed loading periods was drawn from the initiation and development periods of their original clinical trial. Demanding conditions were met involving simultaneously: 1) patients with poor bone quality and quantity, 2) non-optimized implant design, 3) short implants, 4) non-optimized surgical placement, 5) non-optimized surgical protocol and 6) biomechanically non-optimized prosthesis. Extrapolation of the requirement for long healing periods from these particular conditions to more standard situations involving refined surgical protocols and careful patient selection might be questioned. Albeit premature loading has been interpreted as inducing fibrous tissue interposition, immediate loading per se is not responsible for fibrous encapsulation. It is the excess of micromotion during the healing phase that interferes with bone repair. A threshold of tolerated micromotion exists, that is somewhere between 50 microns and 150 microns. It is suggested that loading protocols might be shortened through 2 different approaches. The first way would be to decrease stepwise the delayed loading period for free-standing implants below the presently accepted 3-6 months of healing. The second way would be to identify immediate loading protocols that are capable of keeping the amount of micromotion beneath the threshold of deleterious micromotion. Immediate loading protocols for implants-retained overdentures and fixed bridges are reviewed. It is shown that successful premature loading protocols require a careful and strict patient selection aimed to achieve the best primary stability. These various protocols need to be further documented in order to assess their predictability.

          Related collections

          Author and article information

          Comments

          Comment on this article