116
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CED-10/Rac1 Regulates Endocytic Recycling through the RAB-5 GAP TBC-2

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rac1 is a founding member of the Rho-GTPase family and a key regulator of membrane remodeling. In the context of apoptotic cell corpse engulfment, CED-10/Rac1 acts with its bipartite guanine nucleotide exchange factor, CED-5/Dock180-CED-12/ELMO, in an evolutionarily conserved pathway to promote phagocytosis. Here we show that in the context of the Caenorhabditis elegans intestinal epithelium CED-10/Rac1, CED-5/Dock180, and CED-12/ELMO promote basolateral recycling. Furthermore, we show that CED-10 binds to the RAB-5 GTPase activating protein TBC-2, that CED-10 contributes to recruitment of TBC-2 to endosomes, and that recycling cargo is trapped in recycling endosomes in ced-12, ced-10, and tbc-2 mutants. Expression of GTPase defective RAB-5(Q78L) also traps recycling cargo. Our results indicate that down-regulation of early endosome regulator RAB-5/Rab5 by a CED-5, CED-12, CED-10, TBC-2 cascade is an important step in the transport of cargo through the basolateral recycling endosome for delivery to the plasma membrane.

          Author Summary

          When cargo is internalized from the cell surface by endocytosis, it enters a series of intracellular organelles called endosomes. Endosomes sort cargo, such that some cargos are sent to the lysosome for degradation, while others are recycled to the plasma membrane. Small GTPase proteins (Rabs) are well-known master regulators of endosome function. As cargo moves through the endosomal system, it must pass from the domain controlled by one Rab-GTPase to the domain controlled by another. Little is known about how transitions along the recycling pathway are controlled, or if Rab transitions are necessary for cargo recycling. Here we identified a group of proteins that act on recycling endosomes to deactivate the early acting GTPase RAB-5. Disruption of any of these proteins interferes with recycling. Our work shows that RAB-5 deactivation is important for cargo recycling, and it provides some of the first mechanistic insight into how changes in Rabs can be controlled during endocytic recycling. Importantly, several proteins that we found contribute to this recycling function have roles in other cellular processes, such as cell migration and the removal of cell corpses. Therefore our work also suggests that endocytic recycling could contribute to these processes in previously unsuspected ways.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Distinct Membrane Domains on Endosomes in the Recycling Pathway Visualized by Multicolor Imaging of Rab4, Rab5, and Rab11

          Two endosome populations involved in recycling of membranes and receptors to the plasma membrane have been described, the early and the recycling endosome. However, this distinction is mainly based on the flow of cargo molecules and the spatial distribution of these membranes within the cell. To get insights into the membrane organization of the recycling pathway, we have studied Rab4, Rab5, and Rab11, three regulatory components of the transport machinery. Following transferrin as cargo molecule and GFP-tagged Rab proteins we could show that cargo moves through distinct domains on endosomes. These domains are occupied by different Rab proteins, revealing compartmentalization within the same continuous membrane. Endosomes are comprised of multiple combinations of Rab4, Rab5, and Rab11 domains that are dynamic but do not significantly intermix over time. Three major populations were observed: one that contains only Rab5, a second with Rab4 and Rab5, and a third containing Rab4 and Rab11. These membrane domains display differential pharmacological sensitivity, reflecting their biochemical and functional diversity. We propose that endosomes are organized as a mosaic of different Rab domains created through the recruitment of specific effector proteins, which cooperatively act to generate a restricted environment on the membrane.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Mon1-Ccz1 complex is the GEF of the late endosomal Rab7 homolog Ypt7.

            Rab GTPases coordinate membrane fusion reactions [1]. Rab-GDP requires a guanine nucleotide exchange factor (GEF) for its conversion to the active GTP form. It then binds to effectors such as multimeric tethering complexes and supports fusion [2]. GTPase-activating proteins (GAPs) promote GTP hydrolysis to inactivate the Rab. GEFs are thus critical activators of fusion reactions [3, 4]. The Rab GEF family is diverse, ranging from multimeric complexes [5] to monomeric GEFs [6-9]. At the late endosome, Rab7 activation is critical for endosomal maturation. The yeast Rab7 homolog Ypt7 binds to the homotypic fusion and protein sorting (HOPS) complex [10, 11]. Its subunit Vps39/Vam6 has been proposed as a GEF for Ypt7 [12] and the Rag GTPase Gtr1 [13], but other genetic evidence has implicated the endosomal protein Ccz1 as a GEF for Ypt7 [14]. Ccz1 and its binding partner Mon1 have been linked to endosomal transport and maturation [15-20]. We now provide evidence that the dimeric Mon1-Ccz1 complex is the Rab7/Ypt7 GEF. The Mon1-Ccz1 complex, but neither protein alone, counteracts GAP function in vivo, rescues in vitro fusion of vacuoles carrying Ypt7-GDP, and promotes nucleotide exchange on Ypt7 independently of Vps39/HOPS. Our data indicate that the Mon1-Ccz1 complex triggers endosomal maturation by activating Ypt7 on late endosomes. Copyright © 2010 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Unconventional Rac-GEF activity is mediated through the Dock180-ELMO complex.

              Mammalian Dock180 and ELMO proteins, and their homologues in Caenorhabditis elegans and Drosophila melanogaster, function as critical upstream regulators of Rac during development and cell migration. The mechanism by which Dock180 or ELMO mediates Rac activation is not understood. Here, we identify a domain within Dock180 (denoted Docker) that specifically recognizes nucleotide-free Rac and can mediate GTP loading of Rac in vitro. The Docker domain is conserved among known Dock180 family members in metazoans and in a yeast protein. In cells, binding of Dock180 to Rac alone is insufficient for GTP loading, and a Dock180 ELMO1 interaction is required. We can also detect a trimeric ELMO1 Dock180 Rac1 complex and ELMO augments the interaction between Dock180 and Rac. We propose that the Dock180 ELMO complex functions as an unconventional two-part exchange factor for Rac.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                July 2012
                July 2012
                12 July 2012
                : 8
                : 7
                : e1002785
                Affiliations
                [1 ]Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
                [2 ]Division of Endocrinology and Metabolism, Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montreal, Quebec, Canada
                [3 ]Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
                National Heart, Lung, and Blood Institute, United States of America
                Author notes

                ¤a: Current address: Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, United States of America

                ¤b: Current address: Department of Biology, Stanford University, Stanford, California, United States of America

                Conceived and designed the experiments: LS OL FK AS CER BDG. Performed the experiments: LS OL JD FK M-AS. Analyzed the data: LS OL FK CER BDG. Contributed reagents/materials/analysis tools: LS OL AS ZZ CER. Wrote the paper: LS OL CER BDG. Proofread the manuscript: ZZ CER BDG.

                Article
                PGENETICS-D-12-00595
                10.1371/journal.pgen.1002785
                3395619
                22807685
                25116556-dc08-4a04-a0a1-0888ebcae56c
                Sun et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 6 March 2012
                : 10 May 2012
                Page count
                Pages: 13
                Categories
                Research Article
                Biology
                Genetics
                Model Organisms
                Molecular Cell Biology

                Genetics
                Genetics

                Comments

                Comment on this article