2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Whole genome sequencing of a novel, dichloromethane-fermenting Peptococcaceae from an enrichment culture

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bacteria capable of dechlorinating the toxic environmental contaminant dichloromethane (DCM, CH 2Cl 2) are of great interest for potential bioremediation applications. A novel, strictly anaerobic, DCM-fermenting bacterium, “DCMF”, was enriched from organochlorine-contaminated groundwater near Botany Bay, Australia. The enrichment culture was maintained in minimal, mineral salt medium amended with dichloromethane as the sole energy source. PacBio whole genome SMRT TM sequencing of DCMF allowed de novo, gap-free assembly despite the presence of cohabiting organisms in the culture. Illumina sequencing reads were utilised to correct minor indels. The single, circularised 6.44 Mb chromosome was annotated with the IMG pipeline and contains 5,773 predicted protein-coding genes. Based on 16S rRNA gene and predicted proteome phylogeny, the organism appears to be a novel member of the Peptococcaceae family. The DCMF genome is large in comparison to known DCM-fermenting bacteria. It includes an abundance of methyltransferases, which may provide clues to the basis of its DCM metabolism, as well as potential to metabolise additional methylated substrates such as quaternary amines. Full annotation has been provided in a custom genome browser and search tool, in addition to multiple sequence alignments and phylogenetic trees for every predicted protein, http://www.slimsuite.unsw.edu.au/research/dcmf/.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Clustal Omega for making accurate alignments of many protein sequences.

          Clustal Omega is a widely used package for carrying out multiple sequence alignment. Here, we describe some recent additions to the package and benchmark some alternative ways of making alignments. These benchmarks are based on protein structure comparisons or predictions and include a recently described method based on secondary structure prediction. In general, Clustal Omega is fast enough to make very large alignments and the accuracy of protein alignments is high when compared to alternative packages. The package is freely available as executables or source code from www.clustal.org or can be run on-line from a variety of sites, especially the EBI www.ebi.ac.uk.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world

            The first bacterial genome was sequenced in 1995, and the first archaeal genome in 1996. Soon after these breakthroughs, an exponential rate of genome sequencing was established, with a doubling time of approximately 20 months for bacteria and approximately 34 months for archaea. Comparative analysis of the hundreds of sequenced bacterial and dozens of archaeal genomes leads to several generalizations on the principles of genome organization and evolution. A crucial finding that enables functional characterization of the sequenced genomes and evolutionary reconstruction is that the majority of archaeal and bacterial genes have conserved orthologs in other, often, distant organisms. However, comparative genomics also shows that horizontal gene transfer (HGT) is a dominant force of prokaryotic evolution, along with the loss of genetic material resulting in genome contraction. A crucial component of the prokaryotic world is the mobilome, the enormous collection of viruses, plasmids and other selfish elements, which are in constant exchange with more stable chromosomes and serve as HGT vehicles. Thus, the prokaryotic genome space is a tightly connected, although compartmentalized, network, a novel notion that undermines the ‘Tree of Life’ model of evolution and requires a new conceptual framework and tools for the study of prokaryotic evolution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Alternative pathways of carbon dioxide fixation: insights into the early evolution of life?

              G Fuchs (2010)
              The fixation of inorganic carbon into organic material (autotrophy) is a prerequisite for life and sets the starting point of biological evolution. In the extant biosphere the reductive pentose phosphate (Calvin-Benson) cycle is the predominant mechanism by which many prokaryotes and all plants fix CO(2) into biomass. However, the fact that five alternative autotrophic pathways exist in prokaryotes is often neglected. This bias may lead to serious misjudgments in models of the global carbon cycle, in hypotheses on the evolution of metabolism, and in interpretations of geological records. Here, I review these alternative pathways that differ fundamentally from the Calvin-Benson cycle. Revealingly, these five alternative pathways pivot on acetyl-coenzyme A, the turntable of metabolism, demanding a gluconeogenic pathway starting from acetyl-coenzyme A and CO(2). It appears that the formation of an activated acetic acid from inorganic carbon represents the initial step toward metabolism. Consequently, biosyntheses likely started from activated acetic acid and gluconeogenesis preceded glycolysis.
                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                peerj
                peerj
                PeerJ
                PeerJ Inc. (San Diego, USA )
                2167-8359
                2 October 2019
                2019
                : 7
                : e7775
                Affiliations
                [1 ]UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales , Sydney, New South Wales, Australia
                [2 ]School of Biotechnology and Biomolecular Sciences, University of New South Wales , Sydney, New South Wales, Australia
                [3 ]Department of Molecular Biology and Genetics, Istanbul University , Istanbul, Turkey
                [4 ]School of Chemical Engineering, University of New South Wales , Sydney, New South Wales, Australia
                [5 ]Ramaciotti Centre for Genomics, University of New South Wales , Sydney, New South Wales, Australia
                Article
                7775
                10.7717/peerj.7775
                6778437
                31592187
                25084fe0-c554-4650-b59d-9c6cb84cff59
                ©2019 Holland et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 9 May 2019
                : 27 August 2019
                Funding
                Funded by: Australian Government Research Training Program scholarship
                Sophie I. Holland was supported by an Australian Government Research Training Program scholarship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Genomics
                Microbiology
                Environmental Contamination and Remediation

                peptococcaceae,dichloromethane,whole genome sequencing,phylogeny

                Comments

                Comment on this article