7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impact of Acute and Chronic Cannabis Use on Stress Response Regulation: Challenging the Belief That Cannabis Is an Effective Method for Coping

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although research has only recently started to examine the impact of cannabis use on stress response, there is some evidence that indicates acute and chronic impacts of cannabis on these processes. In this paper, we review processes involved in regulating the stress response and we review the influence of acute and chronic exposure to cannabis on patterns and regulation of the stress response. We also highlight the role of stress as a risk factor for initiation and maintenance of cannabis use. In this context, we examine moderating variables, including sex and life adversity. In light of recent observations indicating increasing prevalence of cannabis use during pregnancy, we provide additional focus on cannabis use in this vulnerable population, including how acute and chronic stress may predispose some individuals to use cannabis during pregnancy. While this line of research is in its infancy, we review available articles that focus on the perinatal period and that examined the association between cannabis use and various life stressors, including partner violence, job loss, and lack of housing. We also review psychiatric co-morbidities (e.g., post-traumatic stress disorder, anxiety). A better understanding of the way stress and cannabis use relate within the general population, as well as within certain subgroups that may be at a greater risk of using and/or at greater risk for adverse outcomes of use, may lead to the development of novel prevention and intervention approaches.

          Related collections

          Most cited references172

          • Record: found
          • Abstract: found
          • Article: not found

          Neurobiology of addiction: a neurocircuitry analysis.

          Drug addiction represents a dramatic dysregulation of motivational circuits that is caused by a combination of exaggerated incentive salience and habit formation, reward deficits and stress surfeits, and compromised executive function in three stages. The rewarding effects of drugs of abuse, development of incentive salience, and development of drug-seeking habits in the binge/intoxication stage involve changes in dopamine and opioid peptides in the basal ganglia. The increases in negative emotional states and dysphoric and stress-like responses in the withdrawal/negative affect stage involve decreases in the function of the dopamine component of the reward system and recruitment of brain stress neurotransmitters, such as corticotropin-releasing factor and dynorphin, in the neurocircuitry of the extended amygdala. The craving and deficits in executive function in the so-called preoccupation/anticipation stage involve the dysregulation of key afferent projections from the prefrontal cortex and insula, including glutamate, to the basal ganglia and extended amygdala. Molecular genetic studies have identified transduction and transcription factors that act in neurocircuitry associated with the development and maintenance of addiction that might mediate initial vulnerability, maintenance, and relapse associated with addiction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Physiology and neurobiology of stress and adaptation: central role of the brain.

            The brain is the key organ of the response to stress because it determines what is threatening and, therefore, potentially stressful, as well as the physiological and behavioral responses which can be either adaptive or damaging. Stress involves two-way communication between the brain and the cardiovascular, immune, and other systems via neural and endocrine mechanisms. Beyond the "flight-or-fight" response to acute stress, there are events in daily life that produce a type of chronic stress and lead over time to wear and tear on the body ("allostatic load"). Yet, hormones associated with stress protect the body in the short-run and promote adaptation ("allostasis"). The brain is a target of stress, and the hippocampus was the first brain region, besides the hypothalamus, to be recognized as a target of glucocorticoids. Stress and stress hormones produce both adaptive and maladaptive effects on this brain region throughout the life course. Early life events influence life-long patterns of emotionality and stress responsiveness and alter the rate of brain and body aging. The hippocampus, amygdala, and prefrontal cortex undergo stress-induced structural remodeling, which alters behavioral and physiological responses. As an adjunct to pharmaceutical therapy, social and behavioral interventions such as regular physical activity and social support reduce the chronic stress burden and benefit brain and body health and resilience.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin.

              R Pertwee (2008)
              Cannabis sativa is the source of a unique set of compounds known collectively as plant cannabinoids or phytocannabinoids. This review focuses on the manner with which three of these compounds, (-)-trans-delta9-tetrahydrocannabinol (delta9-THC), (-)-cannabidiol (CBD) and (-)-trans-delta9-tetrahydrocannabivarin (delta9-THCV), interact with cannabinoid CB1 and CB2 receptors. Delta9-THC, the main psychotropic constituent of cannabis, is a CB1 and CB2 receptor partial agonist and in line with classical pharmacology, the responses it elicits appear to be strongly influenced both by the expression level and signalling efficiency of cannabinoid receptors and by ongoing endogenous cannabinoid release. CBD displays unexpectedly high potency as an antagonist of CB1/CB2 receptor agonists in CB1- and CB2-expressing cells or tissues, the manner with which it interacts with CB2 receptors providing a possible explanation for its ability to inhibit evoked immune cell migration. Delta9-THCV behaves as a potent CB2 receptor partial agonist in vitro. In contrast, it antagonizes cannabinoid receptor agonists in CB1-expressing tissues. This it does with relatively high potency and in a manner that is both tissue and ligand dependent. Delta9-THCV also interacts with CB1 receptors when administered in vivo, behaving either as a CB1 antagonist or, at higher doses, as a CB1 receptor agonist. Brief mention is also made in this review, first of the production by delta9-THC of pharmacodynamic tolerance, second of current knowledge about the extent to which delta9-THC, CBD and delta9-THCV interact with pharmacological targets other than CB1 or CB2 receptors, and third of actual and potential therapeutic applications for each of these cannabinoids.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Psychol
                Front Psychol
                Front. Psychol.
                Frontiers in Psychology
                Frontiers Media S.A.
                1664-1078
                01 July 2021
                2021
                : 12
                : 687106
                Affiliations
                [1] 1Department of Family Medicine and Biobehavioral Health, University of Minnesota Medical School , Duluth, MN, United States
                [2] 2Department of Family and Community Medicine, University of Arizona , Tucson, AZ, United States
                Author notes

                Edited by: Robert D. Torrence, Saint Xavier University, United States

                Reviewed by: Lucy J. Troup, University of the West of Scotland, United Kingdom; Bruno Kluwe Schiavon, University of Minho, Portugal

                *Correspondence: Mustafa al'Absi malabsi@ 123456umn.edu

                This article was submitted to Emotion Science, a section of the journal Frontiers in Psychology

                Article
                10.3389/fpsyg.2021.687106
                8283823
                34276511
                24d75a96-e569-4810-83cd-07269e53d080
                Copyright © 2021 al'Absi and Allen.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 March 2021
                : 21 May 2021
                Page count
                Figures: 1, Tables: 0, Equations: 0, References: 173, Pages: 11, Words: 10616
                Categories
                Psychology
                Review

                Clinical Psychology & Psychiatry
                stress,cannabis,emotions,early life adversities,addiction,coping
                Clinical Psychology & Psychiatry
                stress, cannabis, emotions, early life adversities, addiction, coping

                Comments

                Comment on this article