10
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Aqueous cannabidiol β-cyclodextrin complexed polymeric micelle nasal spray to attenuate in vitro and ex-vivo SARS-CoV-2-induced cytokine storms

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Graphical abstract

          Abstract

          Cannabidiol (CBD) has a number of biological effects by acting on the cannabinoid receptors CB 1 and CB 2. CBD may be involved in anti-inflammatory processes via CB 1 and CB 2 receptors, resulting in a decrease of pro-inflammatory cytokines. However, CBD's poor aqueous solubility is a major issue in pharmaceutical applications. The aim of the present study was to develop and evaluate a CBD nasal spray solution. A water-soluble CBD was prepared by complexation with β-cyclodextrin (β-CD) at a stoichiometric ratio of 1:1 and forming polymeric micelles using poloxamer 407. The mixture was then lyophilized and characterized using FT-IR, DSC, and TGA. CBD-β-CD complex-polymeric micelles were formulated for nasal spray drug delivery. The physicochemical properties of the CBD-β-CD complex-polymeric micelle nasal spray solution (CBD-β-CDPM-NS) were assessed. The results showed that the CBD content in the CBD-β-CD complex polymeric micelle powder was 102.1 ± 0.5%. The CBD-β-CDPM-NS was a clear colorless isotonic solution. The particle size, zeta potential, pH value, and viscosity were 111.9 ± 0.7 nm, 0.8 ± 0.1 mV, 6.02 ± 0.02, and 12.04 ± 2.64 cP, respectively. This formulation was stable over six months at ambient temperature. The CBD from CBD-β-CDPM-NS rapidly released to 100% within 1 min. Ex-vivo permeation studies of CBD-β-CDPM-NS through porcine nasal mucosa revealed a permeation rate of 4.8 μg/cm 2/min, which indicated that CBD was effective in penetrating nasal epithelial cells. CBD-β-CDPM-NS was tested for its efficacy and safety in terms of cytokine production from nasal immune cells and toxicity to nasal epithelial cells. The CBD-β-CDPM-NS was not toxic to nasal epithelial at the concentration of CBD equivalent to 3.125-50 μg/mL. When the formulation was subjected to bioactivity testing against monocyte-like macrophage cells, it proved that the CBD-β-CDPM-NS has the potential to inhibit inflammatory cytokines. CBD-β-CDPM-NS demonstrated the formulation's ability to reduce the cytokine produced by S-RBD stimulation in ex vivo porcine nasal mucosa in both preventative and therapeutic modes.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: not found
          • Article: not found

          A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin.

            R Pertwee (2008)
            Cannabis sativa is the source of a unique set of compounds known collectively as plant cannabinoids or phytocannabinoids. This review focuses on the manner with which three of these compounds, (-)-trans-delta9-tetrahydrocannabinol (delta9-THC), (-)-cannabidiol (CBD) and (-)-trans-delta9-tetrahydrocannabivarin (delta9-THCV), interact with cannabinoid CB1 and CB2 receptors. Delta9-THC, the main psychotropic constituent of cannabis, is a CB1 and CB2 receptor partial agonist and in line with classical pharmacology, the responses it elicits appear to be strongly influenced both by the expression level and signalling efficiency of cannabinoid receptors and by ongoing endogenous cannabinoid release. CBD displays unexpectedly high potency as an antagonist of CB1/CB2 receptor agonists in CB1- and CB2-expressing cells or tissues, the manner with which it interacts with CB2 receptors providing a possible explanation for its ability to inhibit evoked immune cell migration. Delta9-THCV behaves as a potent CB2 receptor partial agonist in vitro. In contrast, it antagonizes cannabinoid receptor agonists in CB1-expressing tissues. This it does with relatively high potency and in a manner that is both tissue and ligand dependent. Delta9-THCV also interacts with CB1 receptors when administered in vivo, behaving either as a CB1 antagonist or, at higher doses, as a CB1 receptor agonist. Brief mention is also made in this review, first of the production by delta9-THC of pharmacodynamic tolerance, second of current knowledge about the extent to which delta9-THC, CBD and delta9-THCV interact with pharmacological targets other than CB1 or CB2 receptors, and third of actual and potential therapeutic applications for each of these cannabinoids.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              COVID-19 cytokine storm: The anger of inflammation

              Highlights: • Increased activity of the RAAS system occurs in the COVID-19 induced cytokine storm. • The COVID-19 induced cytokine storm is accompanied with attenuation of MasR activity. • The SARS-CoV-2 associated ACE2 induces DABK and BKB1R hyper-activation. • The COVID-19 induced cytokine storm leads to hyperactivity of the complement system.
                Bookmark

                Author and article information

                Journal
                Int J Pharm
                Int J Pharm
                International Journal of Pharmaceutics
                Elsevier B.V.
                0378-5173
                1873-3476
                12 May 2023
                12 May 2023
                : 123035
                Affiliations
                [a ]College of Pharmacy, Rangsit University, Pathumtani 12000, Thailand
                [b ]Drug and Cosmetics Excellence Center and School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand
                [c ]Molecular Recognition Materials Research Unit, Nanotec-PSU Center of Excellence on Drug Delivery System Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University Hat Yai, Songkhla 90112, Thailand
                [d ]Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
                Author notes
                [* ]Corresponding author.
                Article
                S0378-5173(23)00455-6 123035
                10.1016/j.ijpharm.2023.123035
                10181874
                24bc80f9-5816-4327-8599-5e0a510b770e
                © 2023 Elsevier B.V. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 11 December 2022
                : 23 April 2023
                : 5 May 2023
                Categories
                Article

                Pharmacology & Pharmaceutical medicine
                cannabidiol,β-cyclodextrin,polymeric micelles,nasal spray solution,sars-cov-2,pro-inflammatory cytokine

                Comments

                Comment on this article