11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Ligand-independent dimerization activates the stress response kinases IRE1 and PERK in the lumen of the endoplasmic reticulum.

      The Journal of Biological Chemistry
      Amino Acid Sequence, Amino Acid Substitution, Animals, Cloning, Molecular, Conserved Sequence, Dimerization, Endoplasmic Reticulum, enzymology, Endoribonucleases, Enzyme Activation, Humans, Kinetics, Ligands, Membrane Proteins, metabolism, Molecular Sequence Data, Mutagenesis, Site-Directed, Protein-Serine-Threonine Kinases, chemistry, genetics, Rats, Recombinant Proteins, Saccharomyces cerevisiae, Sequence Alignment, Sequence Homology, Amino Acid, Signal Transduction, eIF-2 Kinase

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          IRE1 and PERK are type I transmembrane serine/threonine protein kinases that are activated by unfolded proteins in the endoplasmic reticulum (ER) to signal adaptive responses. IRE1 is present in all eukaryotic cells and signals the unfolded protein response through its kinase and endoribonuclease activities. PERK signals phosphorylation of a translation initiation factor to inhibit protein synthesis in higher eukaryotic cells but is absent in the Saccharomyces cerevisiae genome. The amino acid sequences of the amino-terminal ER luminal domains (NLDs) from IRE1 and PERK display limited homology and have diverged among species. In this study, we have demonstrated that the NLD of yeast Ire1p is required for signaling. However, the NLDs from human IRE1alpha and murine IRE1beta and the Caenorhabditis elegans IRE1 and PERK function as replacements for the S. cerevisiae Ire1p-NLD to signal the unfolded protein response. Replacement of the Ire1p-NLD with a functional leucine zipper dimerization motif yielded a constitutively active kinase that surprisingly was further activated by ER stress. These results demonstrate that ER stress-induced dimerization of the NLD is sufficient for IRE1 and PERK activation and is conserved through evolution. We propose that ligand-independent activation of IRE1 and PERK permits homodimerization upon accumulation of unfolded proteins in the lumen of the ER.

          Related collections

          Author and article information

          Comments

          Comment on this article