The role of electrocardiogram (ECG) as a noninvasive technique for detecting and diagnosing cardiac problems cannot be overemphasized. This paper introduces a fuzzy C-mean (FCM) clustered probabilistic neural network (PNN) for the discrimination of eight types of ECG beats. The performance has been compared with FCM clustered multi layered feed forward network (MLFFN) trained with back propagation algorithm. Important parameters are extracted from each ECG beat and feature reduction has been carried out using FCM clustering. The cluster centers form the input of neural network classifiers. The extensive analysis using the MIT-BIH arrhythmia database has shown an average classification accuracy of 97.54% with FCM clustered MLFFN and 99.58% with FCM clustered PNN. Fuzzy clustering improves the classification speed as well. The result reveals the capability of the FCM clustered PNN in the computer-aided diagnosis of ECG abnormalities.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.