9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Sodium-glucose cotransporter 2 inhibitors regulate ketone body metabolism via inter-organ crosstalk

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Can a Shift in Fuel Energetics Explain the Beneficial Cardiorenal Outcomes in the EMPA-REG OUTCOME Study? A Unifying Hypothesis.

          Type 2 diabetes mellitus causes excessive morbidity and premature cardiovascular (CV) mortality. Although tight glycemic control improves microvascular complications, its effects on macrovascular complications are unclear. The recent publication of the EMPA-REG OUTCOME study documenting impressive benefits with empagliflozin (a sodium-glucose cotransporter 2 [SGLT2] inhibitor) on CV and all-cause mortality and hospitalization for heart failure without any effects on classic atherothrombotic events is puzzling. More puzzling is that the curves for heart failure hospitalization, renal outcomes, and CV mortality begin to separate widely within 3 months and are maintained for >3 years. Modest improvements in glycemic, lipid, or blood pressure control unlikely contributed significantly to the beneficial cardiorenal outcomes within 3 months. Other known effects of SGLT2 inhibitors on visceral adiposity, vascular endothelium, natriuresis, and neurohormonal mechanisms are also unlikely major contributors to the CV/renal benefits. We postulate that the cardiorenal benefits of empagliflozin are due to a shift in myocardial and renal fuel metabolism away from fat and glucose oxidation, which are energy inefficient in the setting of the type 2 diabetic heart and kidney, toward an energy-efficient super fuel like ketone bodies, which improve myocardial/renal work efficiency and function. Even small beneficial changes in energetics minute to minute translate into large differences in efficiency, and improved cardiorenal outcomes over weeks to months continue to be sustained. Well-planned physiologic and imaging studies need to be done to characterize fuel energetics-based mechanisms for the CV/renal benefits.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver.

            1. The concentrations of the oxidized and reduced substrates of the lactate-, beta-hydroxybutyrate- and glutamate-dehydrogenase systems were measured in rat livers freeze-clamped as soon as possible after death. The substrates of these dehydrogenases are likely to be in equilibrium with free NAD(+) and NADH, and the ratio of the free dinucleotides can be calculated from the measured concentrations of the substrates and the equilibrium constants (Holzer, Schultz & Lynen, 1956; Bücher & Klingenberg, 1958). The lactate-dehydrogenase system reflects the [NAD(+)]/[NADH] ratio in the cytoplasm, the beta-hydroxybutyrate dehydrogenase that in the mitochondrial cristae and the glutamate dehydrogenase that in the mitochondrial matrix. 2. The equilibrium constants of lactate dehydrogenase (EC 1.1.1.27), beta-hydroxybutyrate dehydrogenase (EC 1.1.1.30) and malate dehydrogenase (EC 1.1.1.37) were redetermined for near-physiological conditions (38 degrees ; I0.25). 3. The mean [NAD(+)]/[NADH] ratio of rat-liver cytoplasm was calculated as 725 (pH7.0) in well-fed rats, 528 in starved rats and 208 in alloxan-diabetic rats. 4. The [NAD(+)]/[NADH] ratio for the mitochondrial matrix and cristae gave virtually identical values in the same metabolic state. This indicates that beta-hydroxybutyrate dehydrogenase and glutamate dehydrogenase share a common pool of dinucleotide. 5. The mean [NAD(+)]/[NADH] ratio within the liver mitochondria of well-fed rats was about 8. It fell to about 5 in starvation and rose to about 10 in alloxan-diabetes. 6. The [NAD(+)]/[NADH] ratios of cytoplasm and mitochondria are thus greatly different and do not necessarily move in parallel when the metabolic state of the liver changes. 7. The ratios found for the free dinucleotides differ greatly from those recorded for the total dinucleotides because much more NADH than NAD(+) is protein-bound. 8. The bearing of these findings on various problems, including the following, is discussed: the number of NAD(+)-NADH pools in liver cells; the applicability of the method to tissues other than liver; the transhydrogenase activity of glutamate dehydrogenase; the physiological significance of the difference of the redox states of mitochondria and cytoplasm; aspects of the regulation of the redox state of cell compartments; the steady-state concentration of mitochondrial oxaloacetate; the relations between the redox state of cell compartments and ketosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              SGLT2 Inhibitors May Predispose to Ketoacidosis.

              Sodium glucose cotransporter 2 (SGLT2) inhibitors are antidiabetic drugs that increase urinary excretion of glucose, thereby improving glycemic control and promoting weight loss. Since approval of the first-in-class drug in 2013, data have emerged suggesting that these drugs increase the risk of diabetic ketoacidosis. In May 2015, the Food and Drug Administration issued a warning that SGLT2 inhibitors may lead to ketoacidosis.
                Bookmark

                Author and article information

                Journal
                Diabetes, Obesity and Metabolism
                Diabetes Obes Metab
                Wiley
                14628902
                April 2019
                April 2019
                December 04 2018
                : 21
                : 4
                : 801-811
                Affiliations
                [1 ]Brain Korea 21 PLUS Project for Medical Science; Yonsei University College of Medicine; Seoul Republic of Korea
                [2 ]Department of Internal Medicine; Yonsei University College of Medicine; Seoul Republic of Korea
                [3 ]Graduate School; Yonsei University College of Medicine; Seoul Republic of Korea
                [4 ]Division of Endocrinology and Metabolism, Department of Internal Medicine; National Health Insurance Service Ilsan Hospital; Goyang Republic of Korea
                [5 ]Institute of Endocrine Research, Yonsei University College of Medicine; Seoul Korea
                [6 ]Department of Systems Biology; Glycosylation Network Research Center, Yonsei University; Seoul Republic of Korea
                [7 ]Department of Systems Biology; Glycosylation Network Research Center, Yonsei University; Seoul Republic of Korea. Severance Biomedical Science Institute, Yonsei Biomedical Research Institute, Yonsei University College of Medicine; Seoul Republic of Korea
                Article
                10.1111/dom.13577
                30407726
                234b6afb-d4da-4111-957d-2ec0090ade06
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article