34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Nt-truncation and coexpression of isolated Nt domains on the membrane trafficking of electroneutral Na +/HCO 3 cotransporters

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The SLC4 genes are all capable of producing multiple variants by alternative splicing or using alternative promoters. The physiological consequences of such diversity are of great interest to investigators. Here, we identified two novel variants of the electroneutral Na +/ cotransporter NBCn1, one full-length starting with “MIPL” and the other Nt-truncated starting with “MDEL”. Moreover, we identified a new promoter of Slc4a10 encoding NBCn2 and a novel type of Nt-truncated NBCn2 starting with “MHAN”. When heterologously expressed, the new NBCn1 variants were well localized to the plasma membrane and exhibited characteristic NBCn1 activity. However, MHAN-NBCn2 was poorly localized on the plasma membrane. By deletion mutations, we identified the Nt regions important for the surface localization of NBCn2. Interestingly, coexpressing the full-length NBCn2 greatly enhances the surface abundance of the Nt-truncated NBCn2. Co-immunoprecipitation and bimolecular fluorescence complementation studies showed that the full-length and Nt-truncated NBCn2 interact with each other to form heterodimers in neuro-2A cells. Finally, we showed that the isolated Nt domain interacts with and enhances the surface abundance of the Nt-truncated NBCn2. The present study expands our knowledge of the NBCn1 and NBCn2 transcriptome, and provides insights into how the Nt domain could affect transporter function by regulating its membrane trafficking.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation.

          Networks of protein interactions coordinate cellular functions. We describe a bimolecular fluorescence complementation (BiFC) assay for determination of the locations of protein interactions in living cells. This approach is based on complementation between two nonfluorescent fragments of the yellow fluorescent protein (YFP) when they are brought together by interactions between proteins fused to each fragment. BiFC analysis was used to investigate interactions among bZIP and Rel family transcription factors. Regions outside the bZIP domains determined the locations of bZIP protein interactions. The subcellular sites of protein interactions were regulated by signaling. Cross-family interactions between bZIP and Rel proteins affected their subcellular localization and modulated transcription activation. These results attest to the general applicability of the BiFC assay for studies of protein interactions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The SLC4 family of bicarbonate (HCO₃⁻) transporters.

            The SLC4 family consists of 10 genes (SLC4A1-5; SLC4A7-11). All encode integral membrane proteins with very similar hydropathy plots-consistent with 10-14 transmembrane segments. Nine SLC4 members encode proteins that transport HCO3(-) (or a related species, such as CO3(2-)) across the plasma membrane. Functionally, eight of these proteins fall into two major groups: three Cl-HCO3 exchangers (AE1-3) and five Na(+)-coupled HCO3(-) transporters (NBCe1, NBCe2, NBCn1, NBCn2, NDCBE). Two of the Na(+)-coupled transporters (NBCe1, NBCe2) are electrogenic; the other three Na(+)-coupled HCO3(-) transporters and all three AEs are electroneutral. In addition, two other SLC4 members (AE4, SLC4A9 and BTR1, SLC4A11) do not yet have a firmly established function. Most, though not all, SLC4 members are functionally inhibited by 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS). SLC4 proteins play important roles many modes of acid-base homeostasis: the carriage of CO2 by erythrocytes, the transport of H(+) or HCO3(-) by several epithelia, as well as the regulation of cell volume and intracellular pH. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Familial distal renal tubular acidosis is associated with mutations in the red cell anion exchanger (Band 3, AE1) gene.

              All affected patients in four families with autosomal dominant familial renal tubular acidosis (dRTA) were heterozygous for mutations in their red cell HCO3-/Cl- exchanger, band 3 (AE1, SLC4A1) genes, and these mutations were not found in any of the nine normal family members studied. The mutation Arg589--> His was present in two families, while Arg589--> Cys and Ser613--> Phe changes were found in the other families. Linkage studies confirmed the co-segregation of the disease with a genetic marker close to AE1. The affected individuals with the Arg589 mutations had reduced red cell sulfate transport and altered glycosylation of the red cell band 3 N-glycan chain. The red cells of individuals with the Ser613--> Phe mutation had markedly increased red cell sulfate transport but almost normal red cell iodide transport. The erythroid and kidney isoforms of the mutant band 3 proteins were expressed in Xenopus oocytes and all showed significant chloride transport activity. We conclude that dominantly inherited dRTA is associated with mutations in band 3; but both the disease and its autosomal dominant inheritance are not related simply to the anion transport activity of the mutant proteins.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                20 July 2015
                2015
                : 5
                : 12241
                Affiliations
                [1 ]Department of Biophysics and Molecular Physiology, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology School of Life Science and Technology , Wuhan, Hubei 430074, China
                [2 ]Department of Physiology and Biophysics, School of Medicine, University at Buffalo: The State University of New York , Buffalo, NY 14214, USA
                [3 ]Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center , Beijing 100091, China
                [4 ]Department of Genetics and Developmental Biology, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology School of Life Science and Technology , Wuhan, Hubei 430074, China
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep12241
                10.1038/srep12241
                4507446
                26192895
                75cb3291-7f41-4edb-aa91-f174a94406bc
                Copyright © 2015, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 18 March 2015
                : 22 June 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article