30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Maintenance of Trypanosoma cruzi, T. evansi and Leishmania spp. by domestic dogs and wild mammals in a rural settlement in Brazil-Bolivian border

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Domestic dogs are considered reservoirs hosts for several vector-borne parasites. This study aimed to evaluate the role of domestic dogs as hosts for Trypanosoma cruzi, Trypanosoma evansi and Leishmania spp. in single and co-infections in the Urucum settlement, near the Brazil-Bolivian border. Additionally, we evaluated the involvement of wild mammals’ in the maintenance of these parasites in the study area. Blood samples of dogs (n = 62) and six species of wild mammals (n = 36) were collected in July and August of 2015. The infections were assessed using parasitological, serological and molecular tests. Clinical examination of dogs was performed and their feeding habits were noted. Overall, 87% (54/62) of sampled dogs were positive for at least one trypanosomatid species, in single (n = 9) and co-infections (n = 45). We found that 76% of dogs were positive for T. cruzi, four of them displayed high parasitemias demonstrated by hemoculture, including one strain types TcI, two TcIII and one TcIII/TcV. Around 73% (45/62) of dogs were positive to T. evansi, three with high parasitemias as seen by positive microhematocrit centrifuge technique. Of dogs sampled, 50% (31/62) were positive for Leishmania spp. by PCR or serology. We found a positive influence of (i) T. evansi on mucous pallor, (ii) co-infection by T. cruzi and Leishmania with onychogryphosis, and (iii) all parasites to skin lesions of sampled dogs. Finally, feeding on wild mammals had a positive influence in the Leishmania spp. infection in dogs. We found that 28% (5/18) coati Nasua nasua was co-infected for all three trypanosamatids, demonstrating that it might play a key role in maintenance of these parasites. Our results showed the importance of Urucum region as a hotspot for T. cruzi, T. evansi and Leishmania spp. and demonstrated that dogs can be considered as incidental hosts.

          Graphical abstract

          Highlights

          • Observation of high occurrence of dogs co-infected by trypanosomatids.

          • Dogs infected by TcI, TcIII and TcIII/TcV.

          • Nasua nasua is a key species in the sylvatic cycles of trypanosomatids.

          • Direct effect of trypanosomatids' infection in clinical signs of dogs.

          • Dogs as sentinels to human infection in the Brazil-Bolivian border.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications.

          The protozoan Trypanosoma cruzi, its mammalian reservoirs, and vectors have existed in nature for millions of years. The human infection, named Chagas disease, is a major public health problem for Latin America. T. cruzi is genetically highly diverse and the understanding of the population structure of this parasite is critical because of the links to transmission cycles and disease. At present, T. cruzi is partitioned into six discrete typing units (DTUs), TcI-TcVI. Here we focus on the current status of taxonomy-related areas such as population structure, phylogeographical and eco-epidemiological features, and the correlation of DTU with natural and experimental infection. We also summarize methods for DTU genotyping, available for widespread use in endemic areas. For the immediate future multilocus sequence typing is likely to be the gold standard for population studies. We conclude that greater advances in our knowledge on pathogenic and epidemiological features of these parasites are expected in the coming decade through the comparative analysis of the genomes from isolates of various DTUs. Copyright © 2012 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transmission and epidemiology of zoonotic protozoal diseases of companion animals.

            Over 77 million dogs and 93 million cats share our households in the United States. Multiple studies have demonstrated the importance of pets in their owners' physical and mental health. Given the large number of companion animals in the United States and the proximity and bond of these animals with their owners, understanding and preventing the diseases that these companions bring with them are of paramount importance. Zoonotic protozoal parasites, including toxoplasmosis, Chagas' disease, babesiosis, giardiasis, and leishmaniasis, can cause insidious infections, with asymptomatic animals being capable of transmitting disease. Giardia and Toxoplasma gondii, endemic to the United States, have high prevalences in companion animals. Leishmania and Trypanosoma cruzi are found regionally within the United States. These diseases have lower prevalences but are significant sources of human disease globally and are expanding their companion animal distribution. Thankfully, healthy individuals in the United States are protected by intact immune systems and bolstered by good nutrition, sanitation, and hygiene. Immunocompromised individuals, including the growing number of obese and/or diabetic people, are at a much higher risk of developing zoonoses. Awareness of these often neglected diseases in all health communities is important for protecting pets and owners. To provide this awareness, this review is focused on zoonotic protozoal mechanisms of virulence, epidemiology, and the transmission of pathogens of consequence to pet owners in the United States.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Two hybridization events define the population structure of Trypanosoma cruzi.

              Genetic variation in Trypanosoma cruzi is likely a key determinant in transmission and pathogenesis of Chagas disease. We have examined nine loci as markers for the extant T. cruzi strains. Four distinct alleles were found for each locus, corresponding to the sequence classes present in the homozygous discrete typing units (DTUs) I, IIa, IIb, and IIc. The alleles in DTUs IIa and IIc showed a spectrum of polymorphism ranging from DTU I-like to DTU IIb-like, in addition to DTU-specific sequence variation. DTUs IId and IIe were indistinguishable, showing DTU homozygosity at one locus and heterozygosity with DTU IIb and IIc allelic sequences at eight loci. Recombination between the DTU IIb and IIc alleles is evidenced from mosaic polymorphisms. These data imply that two discrete hybridization events resulted in the formation of the current DTUs. We propose a model in which a fusion between ancestral DTU I and IIb strains gave rise to a heterozygous hybrid that homogenized its genome to become the homozygous progenitor of DTUs IIa and IIc. The second hybridization between DTU IIb and IIc strains that generated DTUs IId and IIe resulted in extensive heterozygosity with subsequent recombination of parental genotypes.
                Bookmark

                Author and article information

                Contributors
                Journal
                Int J Parasitol Parasites Wildl
                Int J Parasitol Parasites Wildl
                International Journal for Parasitology: Parasites and Wildlife
                Elsevier
                2213-2244
                17 October 2018
                December 2018
                17 October 2018
                : 7
                : 3
                : 398-404
                Affiliations
                [a ]Programa de Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Tamandaré Avenue, 6000. Jardim Seminário, Cep 79117-900, Campo Grande, Mato Grosso do Sul, Brazil
                [b ]Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal de Mato Grosso do Sul, Costa e Silva Avenue, Cep 79070-900, Campo Grande, Mato Grosso do Sul, Brazil
                [c ]Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, 4458, College Station, Texas, USA
                [d ]Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Prof. Paulo Donato Castelane Street, Cep 14884-900, Jaboticabal, São Paulo, Brazil
                [e ]Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Brazil Avenue, 4365, Manguinhos, Rio de Janeiro, Rio de Janeiro, Brazil
                Author notes
                []Corresponding author. filipemsantos@ 123456outlook.com
                Article
                S2213-2244(18)30053-1
                10.1016/j.ijppaw.2018.10.004
                6199764
                230ea8e9-1c8f-4bc3-aac5-737a1ee3fc19
                © 2018 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 6 June 2018
                : 30 September 2018
                : 13 October 2018
                Categories
                Article

                canine,neglected diseases,pantanal,sentinels hosts,trypanosomatids

                Comments

                Comment on this article

                scite_

                Similar content230

                Cited by12

                Most referenced authors1,206