0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Structural, Optical and Photocatalytic Properties of Mn Doped ZnO Nanoparticles Used as Photocatalysts for Azo-Dye Degradation under Visible Light

      , , , , ,
      Catalysts
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Doping ZnO with appropriate foreign metal and/or non-metal ions is one of the most promising ways to improve both the extension of ZnO photosensitization to the visible region and the separation of charge carriers. Herein, Mn-doped ZnO nanoparticles were synthesized using a precipitation method. The effect of the Mn amount on the physico-chemical properties of these nanomaterials was investigated using X-ray diffraction, Fourier-transform infrared spectroscopy, UV–visible diffuse reflectance spectroscopy, photoluminescence spectroscopy and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy. The photocatalytic properties of the synthesized nanomaterials were assessed through methyl orange (MO) under visible light. The obtained results showed that the structural and optical properties of the synthesized Mn-ZnO nanomaterials depended greatly on the Mn amount. It was found that the substitution of Zn2+ by Mn2+/Mn3+ within the lattice of ZnO occurred. The photocatalytic experiments revealed that the sample containing 10 wt% exhibited the best MO conversion. For this sample, the discoloration reached 96%, while the chemical oxygen demand reached 1% after 820 min of visible illumination. The enhanced photocatalytic activity was attributed to the efficient separation of charge carriers. The active species quenching experiments showed that the holes are the main active species in MO degradation under visible light in the presence of 10%Mn-ZnO.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals.

          When used as a photocatalyst, titanium dioxide (TiO(2)) absorbs only ultraviolet light, and several approaches, including the use of dopants such as nitrogen, have been taken to narrow the band gap of TiO(2). We demonstrated a conceptually different approach to enhancing solar absorption by introducing disorder in the surface layers of nanophase TiO(2) through hydrogenation. We showed that disorder-engineered TiO(2) nanocrystals exhibit substantial solar-driven photocatalytic activities, including the photo-oxidation of organic molecules in water and the production of hydrogen with the use of a sacrificial reagent.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Enhanced photocatalytic CO₂-reduction activity of anatase TiO₂ by coexposed {001} and {101} facets.

            Control of TiO2 crystal facets has attracted enormous interest due to the fascinating shape-dependent photocatalytic activity of this material. In this work, the effect of the ratio of {001} and {101} facets on the photocatalytic CO2-reduction performance of anatase TiO2 is reported. A new "surface heterojunction" concept is proposed on the basis of the density functional theory (DFT) calculations to explain the difference in the photocatalytic activity of TiO2 with coexposed {001} and {101} facets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview

              Pictorial representation of all possible dye degradation reaction in UV light initiated indirect dye degradation mechanism. This mechanism is practically more important over visible light initiated direct mechanism. The total annual production of synthetic dye is more than 7 × 10 5 tons. Annually, through only textile waste effluents, around one thousand tons of non-biodegradable textile dyes are discharged into natural streams and water bodies. Therefore, with growing environmental concerns and environmental awareness there is a need for the removal of dyes from local and industrial water effluents with a cost effective technology. In general, these dyes have been found to be resistant to biological as well as physical treatment technologies. In this regard, heterogeneous advanced oxidation processes (AOPs), involving photo-catalyzed degradation of dyes using semiconductor nanoparticles is considered as an efficient cure for dye pollution. In the last two decades TiO 2 has received considerable interest because of its high potential as a photocatalyst to degrade a wide range of organic material including dyes. This review starts with (i) a brief overview on dye pollution, dye classification and dye decolourization/degradation strategies; (ii) focuses on the mechanisms involved in comparatively well understood TiO 2 photocatalysts and (iii) discusses recent advancements to enhance TiO 2 photocatalytic efficiency by (a) doping with metals, non-metals, transition metals, noble metals and lanthanide ions, (b) structural modifications of TiO 2 and (c) immobilization of TiO 2 by using various supports to make it a flexible and cost-effective commercial dye treatment technology.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                CATACJ
                Catalysts
                Catalysts
                MDPI AG
                2073-4344
                November 2022
                November 07 2022
                : 12
                : 11
                : 1382
                Article
                10.3390/catal12111382
                22c0f83d-2fdf-4229-bd40-53588a4bc6fb
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article