20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Distinct Pools of cdc25C Are Phosphorylated on Specific TP Sites and Differentially Localized in Human Mitotic Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The dual specificity phosphatase cdc25C was the first human cdc25 family member found to be essential in the activation of cdk1/cyclin B1 that takes place at the entry into mitosis. Human cdc25C is phosphorylated on Proline-dependent SP and TP sites when it becomes active at mitosis and the prevalent model is that this phosphorylation/activation of cdc25C would be part of an amplification loop with cdk1/cyclin B1.

          Methodology/Principal Findings

          Using highly specific antibodies directed against cdc25C phospho-epitopes, pT67 and pT130, we show here that these two phospho-forms of cdc25C represent distinct pools with differential localization during human mitosis. Phosphorylation on T67 occurs from prophase and the cdc25C-pT67 phospho-isoform closely localizes with condensed chromosomes throughout mitosis. The phospho-T130 form of cdc25C arises in late G2 and associates predominantly with centrosomes from prophase to anaphase B where it colocalizes with Plk1. As shown by immunoprecipitation of each isoform, these two phospho-forms are not simultaneously phosphorylated on the other mitotic TP sites or associated with one another. Phospho-T67 cdc25C co-precipitates with MPM2-reactive proteins while pT130-cdc25C is associated with Plk1. Interaction and colocalization of phosphoT130-cdc25C with Plk1 demonstrate in living cells, that the sequence around pT130 acts as a true Polo Box Domain (PBD) binding site as previously identified from in vitro peptide screening studies. Overexpression of non-phosphorylatable alanine mutant forms for each isoform, but not wild type cdc25C, strongly impairs mitotic progression showing the functional requirement for each site-specific phosphorylation of cdc25C at mitosis.

          Conclusions/Significance

          These results show for the first time that in human mitosis, distinct phospho-isoforms of cdc25C exist with different localizations and interacting partners, thus implying that the long-standing model of a cdc25C/cdk1 multi-site auto amplification loop is implausible.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Principles of CDK regulation.

          D Morgan (1995)
          As key regulators of the cell cycle, the cyclin-dependent kinases must be tightly regulated by extra- and intracellular signals. The activity of cyclin-dependent kinases is controlled by four highly conserved biochemical mechanisms, forming a web of regulatory pathways unmatched in its elegance and intricacy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Proteomic screen finds pSer/pThr-binding domain localizing Plk1 to mitotic substrates.

            We have developed a proteomic approach for identifying phosphopeptide binding domains that modulate kinase-dependent signaling pathways. An immobilized library of partially degenerate phosphopeptides biased toward a particular protein kinase phosphorylation motif is used to isolate phospho-binding domains that bind to proteins phosphorylated by that kinase. Applying this approach to cyclin-dependent kinases (Cdks), we identified the polo-box domain (PBD) of the mitotic kinase polo-like kinase 1 (Plk1) as a specific phosphoserine (pSer) or phosphothreonine (pThr) binding domain and determined its optimal binding motif. This motif is present in known Plk1 substrates such as Cdc25, and an optimal phosphopeptide containing the motif disrupted PBD-substrate binding and localization of the PBD to centrosomes. This finding reveals how Plk1 can localize to specific sites within cells in response to Cdk phosphorylation at those sites and provides a structural mechanism for targeting the Plk1 kinase domain to its substrates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216.

              Human Cdc25C is a dual-specificity protein phosphatase that controls entry into mitosis by dephosphorylating the protein kinase Cdc2. Throughout interphase, but not in mitosis, Cdc25C was phosphorylated on serine-216 and bound to members of the highly conserved and ubiquitously expressed family of 14-3-3 proteins. A mutation preventing phosphorylation of serine-216 abrogated 14-3-3 binding. Conditional overexpression of this mutant perturbed mitotic timing and allowed cells to escape the G2 checkpoint arrest induced by either unreplicated DNA or radiation-induced damage. Chk1, a fission yeast kinase involved in the DNA damage checkpoint response, phosphorylated Cdc25C in vitro on serine-216. These results indicate that serine-216 phosphorylation and 14-3-3 binding negatively regulate Cdc25C and identify Cdc25C as a potential target of checkpoint control in human cells.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                26 July 2010
                : 5
                : 7
                : e11798
                Affiliations
                [1]Cell Biology Unit, Institute de Genetique Humain, CNRS-UPR1142, Montpellier, France
                University of Birmingham, United Kingdom
                Author notes

                Conceived and designed the experiments: AF NL. Performed the experiments: CF DM LHM NL. Analyzed the data: CF DM LHM NL. Contributed reagents/materials/analysis tools: CF DM AF NL. Wrote the paper: AF NL.

                Article
                10-PONE-RA-17715R2
                10.1371/journal.pone.0011798
                2909920
                20668692
                22a29bc4-7fcc-4295-b3d7-4c65aac2cf7f
                Franckhauser et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 7 April 2010
                : 6 July 2010
                Page count
                Pages: 14
                Categories
                Research Article
                Cell Biology
                Cell Biology/Cell Growth and Division
                Cell Biology/Cell Signaling
                Cell Biology/Cytoskeleton

                Uncategorized
                Uncategorized

                Comments

                Comment on this article