4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Absence of apparent phenotype in mice lacking Cdc25C protein phosphatase.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Cdc25 family of protein phosphatases positively regulate the cell division cycle by activating cyclin-dependent protein kinases. In humans and rodents, three Cdc25 family members denoted Cdc25A, -B, and -C have been identified. The murine forms of Cdc25 exhibit distinct patterns of expression both during development and in adult mouse tissues. In order to determine unique contributions made by the Cdc25C protein phosphatase to embryonic and adult cell cycles, mice lacking Cdc25C were generated. We report that Cdc25C(-/-) mice are viable and do not display any obvious abnormalities. Among adult tissues in which Cdc25C is detected, its transcripts are most abundant in testis, followed by thymus, ovary, spleen, and intestine. Mice lacking Cdc25C were fertile, indicating that Cdc25C does not contribute an essential function during spermatogenesis or oogenesis in the mouse. T- and B-cell development was also found to be normal in Cdc25C(-/-) mice, and Cdc25C(-/-) mouse splenic T and B cells exhibited normal proliferative responses in vitro. Finally, the phosphorylation status of Cdc2, the timing of entry into mitosis, and the cellular response to DNA damage were unperturbed in mouse embryo fibroblasts lacking Cdc25C. These findings indicate that Cdc25A and/or Cdc25B may compensate for loss of Cdc25C in the mouse.

          Related collections

          Author and article information

          Journal
          Mol Cell Biol
          Molecular and cellular biology
          American Society for Microbiology
          0270-7306
          0270-7306
          Jun 2001
          : 21
          : 12
          Affiliations
          [1 ] Department of Cell Biology and Physiology, Washington University Medical School, St. Louis, Missouri 63110, USA.
          Article
          10.1128/MCB.21.12.3853-3861.2001
          87049
          11359894
          49c64571-5b13-4f33-b7c7-407ee4057038
          History

          Comments

          Comment on this article