Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Direct detection of RNA modifications and structure using single-molecule nanopore sequencing

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          SUMMARY

          Modifications are present on many classes of RNA, including tRNA, rRNA, and mRNA. These modifications modulate diverse biological processes such as genetic recoding and mRNA export and folding. In addition, modifications can be introduced to RNA molecules using chemical probing strategies that reveal RNA structure and dynamics. Many methods exist to detect RNA modifications by short-read sequencing; however, limitations on read length inherent to short-read-based methods dissociate modifications from their native context, preventing single-molecule modification analysis. Here, we demonstrate direct RNA nanopore sequencing to detect endogenous and exogenous RNA modifications on long RNAs at the single-molecule level. We detect endogenous 2'- O-methyl and base modifications across E. coli and S. cerevisiae ribosomal RNAs as shifts in current signal and dwell times distally through interactions with the helicase motor protein. We further use the 2'-hydroxyl reactive SHAPE reagent acetylimidazole to probe RNA structure at the single-molecule level with readout by direct nanopore sequencing.

          In brief

          Stephenson et al. employ direct RNA nanopore sequencing to detect endogenous and exogenous modifications on single RNA molecules. The authors demonstrate detection of endogenous 2'- O-methylation (Nm) on native ribosomal RNAs, confirming known modification patterns. They describe the development of nanoSHAPE, a method that involves exogenously labeling RNA with a small-adduct-generating chemical probe that can reveal RNA structure using long-read sequencing.

          Graphical Abstract

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Reading, writing and erasing mRNA methylation

          RNA methylation to form N6-methyladenosine (m6A) in mRNA accounts for the most abundant mRNA internal modification and has emerged as a widespread regulatory mechanism that controls gene expression in diverse physiological processes. Transcriptome-wide m6A mapping has revealed the distribution and pattern of m6A in cellular RNAs, referred to as the epitranscriptome. These maps have revealed the specific mRNAs that are regulated by m6A, providing mechanistic links connecting m6A to cellular differentiation, cancer progression and other processes. The effects of m6A on mRNA are mediated by an expanding list of m6A readers and m6A writer-complex components, as well as potential erasers that currently have unclear relevance to m6A prevalence in the transcriptome. Here we review new and emerging methods to characterize and quantify the epitranscriptome, and we discuss new concepts - in some cases, controversies - regarding our understanding of the mechanisms and functions of m6A readers, writers and erasers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA.

            Pseudouridine is the most abundant RNA modification, yet except for a few well-studied cases, little is known about the modified positions and their function(s). Here, we develop Ψ-seq for transcriptome-wide quantitative mapping of pseudouridine. We validate Ψ-seq with spike-ins and de novo identification of previously reported positions and discover hundreds of unique sites in human and yeast mRNAs and snoRNAs. Perturbing pseudouridine synthases (PUS) uncovers which pseudouridine synthase modifies each site and their target sequence features. mRNA pseudouridinylation depends on both site-specific and snoRNA-guided pseudouridine synthases. Upon heat shock in yeast, Pus7p-mediated pseudouridylation is induced at >200 sites, and PUS7 deletion decreases the levels of otherwise pseudouridylated mRNA, suggesting a role in enhancing transcript stability. rRNA pseudouridine stoichiometries are conserved but reduced in cells from dyskeratosis congenita patients, where the PUS DKC1 is mutated. Our work identifies an enhanced, transcriptome-wide scope for pseudouridine and methods to dissect its underlying mechanisms and function. Copyright © 2014 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells

              Post-transcriptional modification of RNA nucleosides occurs in all living organisms. Pseudouridine, the most abundant modified nucleoside in non-coding RNAs 1 , enhances the function of transfer RNA and ribosomal RNA by stabilizing RNA structure 2–8 . mRNAs were not known to contain pseudouridine, but artificial pseudouridylation dramatically affects mRNA function – it changes the genetic code by facilitating non-canonical base pairing in the ribosome decoding center 9,10 . However, without evidence of naturally occurring mRNA pseudouridylation, its physiological was unclear. Here we present a comprehensive analysis of pseudouridylation in yeast and human RNAs using Pseudo-seq, a genome-wide, single-nucleotide-resolution method for pseudouridine identification. Pseudo-seq accurately identifies known modification sites as well as 100 novel sites in non-coding RNAs, and reveals hundreds of pseudouridylated sites in mRNAs. Genetic analysis allowed us to assign most of the new modification sites to one of seven conserved pseudouridine synthases, Pus1–4, 6, 7 and 9. Notably, the majority of pseudouridines in mRNA are regulated in response to environmental signals, such as nutrient deprivation in yeast and serum starvation in human cells. These results suggest a mechanism for the rapid and regulated rewiring of the genetic code through inducible mRNA modifications. Our findings reveal unanticipated roles for pseudouridylation and provide a resource for identifying the targets of pseudouridine synthases implicated in human disease 11–13 .
                Bookmark

                Author and article information

                Journal
                9918284260106676
                51106
                Cell Genom
                Cell Genom
                Cell genomics
                2666-979X
                20 February 2022
                9 February 2022
                9 February 2022
                04 March 2022
                : 2
                : 2
                : 100097
                Affiliations
                [1 ]Technology Innovation Lab, New York Genome Center, New York, NY, USA
                [2 ]Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
                [3 ]Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
                [4 ]Present address: Genentech, South San Francisco, CA, USA
                [5 ]Present address: 10× Genomics, Pleasanton, CA, USA
                [6 ]Lead contact
                Author notes

                AUTHOR CONTRIBUTIONS

                Conceptualization, W.S.; methodology W.S., P.S., W.T., and K.M.W.; investigation, W.S.; formal analysis, W.S., R.R., S.B., K.M.W., and W.T.; resources, W.T. and P.S.; writing – original draft, W.S., P.S., and W.T.; writing – review & editing, W.S., R.R., W.T., K.M.W., and P.S.; supervision, W.T., K.M.W., and P.S.; funding acquisition W.T., K.M.W., and P.S.

                Article
                NIHMS1779281
                10.1016/j.xgen.2022.100097
                8896822
                35252946
                228f3f72-83d0-495e-a3f2-663e99060037

                This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                Categories
                Article

                Comments

                Comment on this article