92
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nerolidol: A Sesquiterpene Alcohol with Multi-Faceted Pharmacological and Biological Activities

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nerolidol (3,7,11-trimethyl-1,6,10-dodecatrien-3-ol) is a naturally occurring sesquiterpene alcohol that is present in various plants with a floral odor. It is synthesized as an intermediate in the production of (3 E)-4,8-dimethy-1,3,7-nonatriene (DMNT), a herbivore-induced volatile that protects plants from herbivore damage. Chemically, nerolidol exists in two geometric isomers, a trans and a cis form. The usage of nerolidol is widespread across different industries. It has been widely used in cosmetics (e.g., shampoos and perfumes) and in non-cosmetic products (e.g., detergents and cleansers). In fact, U.S. Food and Drug Administration (FDA) has also permitted the use of nerolidol as a food flavoring agent. The fact that nerolidol is a common ingredient in many products has attracted researchers to explore more medicinal properties of nerolidol that may exert beneficial effect on human health. Therefore, the aim of this review is to compile and consolidate the data on the various pharmacological and biological activities displayed by nerolidol. Furthermore, this review also includes pharmacokinetic and toxicological studies of nerolidol. In summary, the various pharmacological and biological activities demonstrated in this review highlight the prospects of nerolidol as a promising chemical or drug candidate in the field of agriculture and medicine.

          Related collections

          Most cited references147

          • Record: found
          • Abstract: found
          • Article: not found

          Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world.

          Botanical insecticides have long been touted as attractive alternatives to synthetic chemical insecticides for pest management because botanicals reputedly pose little threat to the environment or to human health. The body of scientific literature documenting bioactivity of plant derivatives to arthropod pests continues to expand, yet only a handful of botanicals are currently used in agriculture in the industrialized world, and there are few prospects for commercial development of new botanical products. Pyrethrum and neem are well established commercially, pesticides based on plant essential oils have recently entered the marketplace, and the use of rotenone appears to be waning. A number of plant substances have been considered for use as insect antifeedants or repellents, but apart from some natural mosquito repellents, little commercial success has ensued for plant substances that modify arthropod behavior. Several factors appear to limit the success of botanicals, most notably regulatory barriers and the availability of competing products (newer synthetics, fermentation products, microbials) that are cost-effective and relatively safe compared with their predecessors. In the context of agricultural pest management, botanical insecticides are best suited for use in organic food production in industrialized countries but can play a much greater role in the production and postharvest protection of food in developing countries.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antibacterial and antifungal properties of essential oils.

            In recent years there has been an increasing interest in the use of natural substances, and some questions concerning the safety of synthetic compounds have encouraged more detailed studies of plant resources. Essential oils, odorous and volatile products of plant secondary metabolism, have a wide application in folk medicine, food flavouring and preservation as well as in fragrance industries. The antimicrobial properties of essential oils have been known for many centuries. In recent years (1987-2001), a large number of essential oils and their constituents have been investigated for their antimicrobial properties against some bacteria and fungi in more than 500 reports. This paper reviews the classical methods commonly used for the evaluation of essential oils antibacterial and antifungal activities. The agar diffusion method (paper disc and well) and the dilution method (agar and liquid broth) as well as turbidimetric and impedimetric monitoring of microorganism growth in the presence of tested essential oils are described. Factors influencing the in vitro antimicrobial activity of essential oils and the mechanisms of essential oils action on microorganisms are reported. This paper gives an overview on the susceptibility of human and food-borne bacteria and fungi towards different essential oils and their constituents. Essential oils of spices and herbs (thyme, origanum, mint, cinnamon, salvia and clove) were found to possess the strongest antimicrobial properties among many tested.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Leishmaniasis: complexity at the host-pathogen interface.

              Leishmania is a genus of protozoan parasites that are transmitted by the bite of phlebotomine sandflies and give rise to a range of diseases (collectively known as leishmaniases) that affect over 150 million people worldwide. Cellular immune mechanisms have a major role in the control of infections with all Leishmania spp. However, as discussed in this Review, recent evidence suggests that each host-pathogen combination evokes different solutions to the problems of parasite establishment, survival and persistence. Understanding the extent of this diversity will be increasingly important in ensuring the development of broadly applicable vaccines, drugs and immunotherapeutic interventions.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                28 April 2016
                May 2016
                : 21
                : 5
                : 529
                Affiliations
                [1 ]School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; wkcha29@ 123456student.monash.edu (W.-K.C.); lttan13@ 123456student.monash.edu (L.T.-H.T.)
                [2 ]Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
                [3 ]Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; kokgan@ 123456um.edu.my
                [4 ]Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, 56000 Phayao, Thailand
                Author notes
                [* ]Correspondence: lee.learn.han@ 123456monash.edu or leelearnhan@ 123456yahoo.com (L.-H.L.); goh.bey.hing@ 123456monash.edu (B.-H.G.); Tel.: +60-3-5514-5887 or +60-3-5514-4887 (L.-H.L. & B.-H.G.); Fax: +60-3-5514-6364 (L.-H.L. & B.-H.G.)
                Article
                molecules-21-00529
                10.3390/molecules21050529
                6272852
                27136520
                22604323-d377-4a4d-9466-ef2e528cac1c
                © 2016 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 24 February 2016
                : 14 April 2016
                Categories
                Review

                cis-nerolidol,trans-nerolidol,sesquiterpene,essential oil,pharmacological activities

                Comments

                Comment on this article