8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Small noncoding RNAs in FSHD2 muscle cells reveal both DUX4- and SMCHD1-specific signatures

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p id="d6514108e218">Facioscapulohumeral muscular dystrophy (FSHD) is caused by insufficient epigenetic repression of D4Z4 macrosatellite repeat where DUX4, an FSHD causing gene is embedded. There are two forms of FSHD, FSHD1 with contraction of D4Z4 repeat and FSHD2 with chromatin compaction defects mostly due to SMCHD1 mutation. Previous reports showed DUX4-induced gene expression changes as well as changes in microRNA expression in FSHD muscle cells. However, a genome wide analysis of small noncoding RNAs that might be regulated by DUX4 or by mutations in SMCHD1 has not been reported yet. Here, we identified several types of small noncoding RNAs including known microRNAs that are differentially expressed in FSHD2 muscle cells compared to control. Although fewer small RNAs were differentially expressed during muscle differentiation in FSHD2 cells compared to controls, most of the known myogenic microRNAs, such as miR1, miR133a and miR206 were induced in both FSHD2 and control muscle cells during differentiation. Our small RNA sequencing data analysis also revealed both DUX4- and SMCHD1-specific changes in FSHD2 muscle cells. Six FSHD2 microRNAs were affected by DUX4 overexpression in control myoblasts, whereas increased expression of tRNAs and 5S rRNAs in FSHD2 muscle cells was largely recapitulated in SMCHD1-depleted control myoblasts. Altogether, our studies suggest that the small noncoding RNA transcriptome changes in FSHD2 might be different from those in FSHD1 and that these differences may provide new diagnostic and therapeutic tools specific to FSHD2. </p>

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Embryonic stem cell-specific MicroRNAs.

          We have identified microRNAs (miRNAs) in undifferentiated and differentiated mouse embryonic stem (ES) cells. Some of these appear to be ES cell specific, have related sequences, and are encoded by genomic loci clustered within 2.2 kb of each other. Their expression is repressed as ES cells differentiate into embryoid bodies and is undetectable in adult mouse organs. In contrast, the levels of many previously described miRNAs remain constant or increase upon differentiation. Our results suggest that miRNAs may have a role in the maintenance of the pluripotent cell state and in the regulation of early mammalian development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Digenic inheritance of an SMCHD1 mutation and an FSHD-permissive D4Z4 allele causes facioscapulohumeral muscular dystrophy type 2

            Facioscapulohumeral dystrophy (FSHD) is characterized by chromatin relaxation of the D4Z4 macrosatellite array on chromosome 4 and expression of the D4Z4-encoded DUX4 gene in skeletal muscle. The more common form, autosomal dominant FSHD1, is caused by a contraction of the D4Z4 array, whereas the genetic determinants and inheritance of D4Z4 array contraction-independent FSHD2 are unclear. Here we show that mutations in SMCHD1 (structural maintenance of chromosomes flexible hinge domain containing 1) on chromosome 18 reduce SMCHD1 protein levels and segregate with genome-wide D4Z4 CpG hypomethylation in human kindreds. FSHD2 occurs in individuals who inherited both the SMCHD1 mutation and a normal-sized D4Z4 array on a chromosome 4 haplotype permissive for DUX4 expression. Reducing SMCHD1 levels in skeletal muscle results in contraction-independent DUX4 expression. Our study identifies SMCHD1 as an epigenetic modifier of the D4Z4 metastable epiallele and as a causal genetic determinant of FSHD2 and possibly other human diseases subject to epigenetic regulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human embryonic stem cells express a unique set of microRNAs.

              Human embryonic stem (hES) cells are pluripotent cell lines established from the explanted inner cell mass of human blastocysts. Despite their importance for human embryology and regenerative medicine, studies on hES cells, unlike those on mouse ES (mES) cells, have been hampered by difficulties in culture and by scant knowledge concerning the regulatory mechanism. Recent evidence from plants and animals indicates small RNAs of approximately 22 nucleotides (nt), collectively named microRNAs, play important roles in developmental regulation. Here we describe 36 miRNAs (from 32 stem-loops) identified by cDNA cloning in hES cells. Importantly, most of the newly cloned miRNAs are specifically expressed in hES cells and downregulated during development into embryoid bodies (EBs), while miRNAs previously reported from other human cell types are poorly expressed in hES cells. We further show that some of the ES-specific miRNA genes are highly related to each other, organized as clusters, and transcribed as polycistronic primary transcripts. These miRNA gene families have murine homologues that have similar genomic organizations and expression patterns, suggesting that they may operate key regulatory networks conserved in mammalian pluripotent stem cells. The newly identified hES-specific miRNAs may also serve as molecular markers for the early embryonic stage and for undifferentiated hES cells.
                Bookmark

                Author and article information

                Journal
                Human Molecular Genetics
                Oxford University Press (OUP)
                0964-6906
                1460-2083
                August 01 2018
                August 01 2018
                May 08 2018
                August 01 2018
                August 01 2018
                May 08 2018
                : 27
                : 15
                : 2644-2657
                Affiliations
                [1 ]Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
                [2 ]MAT Department, Allen Brain Institute, Seattle, WA 98109, USA
                [3 ]Department of Neurology, University of Rochester, Rochester, NY 14642, USA
                [4 ]Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
                [5 ]Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98109, USA
                [6 ]Department of Pathology, University of Washington, Seattle, WA 98195, USA
                Article
                10.1093/hmg/ddy173
                6048983
                29741619
                2234cce4-7578-41b0-ad47-3601bc6d2924
                © 2018

                https://academic.oup.com/journals/pages/about_us/legal/notices

                History

                Comments

                Comment on this article