16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Differences in functional network between focal onset nonconvulsive status epilepticus and toxic metabolic encephalopathy: application to machine learning models for differential diagnosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We aimed to compare network properties between focal-onset nonconvulsive status epilepticus (NCSE) and toxic/metabolic encephalopathy (TME) during periods of periodic discharge using graph theoretical analysis, and to evaluate the applicability of graph measures as markers for the differential diagnosis between focal-onset NCSE and TME, using machine learning algorithms. Electroencephalography (EEG) data from 50 focal-onset NCSE and 44 TMEs were analyzed. Epochs with nonictal periodic discharges were selected, and the coherence in each frequency band was analyzed. Graph theoretical analysis was performed to compare brain network properties between the groups. Eight different traditional machine learning methods were implemented to evaluate the utility of graph theoretical measures as input features to discriminate between the two conditions. The average degree (in delta, alpha, beta, and gamma bands), strength (in delta band), global efficiency (in delta and alpha bands), local efficiency (in delta band), clustering coefficient (in delta band), and transitivity (in delta band) were higher in TME than in NCSE. TME showed lower modularity (in delta band) and assortativity (in alpha, beta, and gamma bands) than NCSE. Machine learning algorithms based on EEG global graph measures classified NCSE and TME with high accuracy, and gradient boosting was the most accurate classification model with an area under the receiver operating characteristics curve of 0.904. Our findings on differences in network properties may provide novel insights that graph measures reflecting the network properties could be quantitative markers for the differential diagnosis between focal-onset NCSE and TME.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Complex network measures of brain connectivity: uses and interpretations.

          Brain connectivity datasets comprise networks of brain regions connected by anatomical tracts or by functional associations. Complex network analysis-a new multidisciplinary approach to the study of complex systems-aims to characterize these brain networks with a small number of neurobiologically meaningful and easily computable measures. In this article, we discuss construction of brain networks from connectivity data and describe the most commonly used network measures of structural and functional connectivity. We describe measures that variously detect functional integration and segregation, quantify centrality of individual brain regions or pathways, characterize patterns of local anatomical circuitry, and test resilience of networks to insult. We discuss the issues surrounding comparison of structural and functional network connectivity, as well as comparison of networks across subjects. Finally, we describe a Matlab toolbox (http://www.brain-connectivity-toolbox.net) accompanying this article and containing a collection of complex network measures and large-scale neuroanatomical connectivity datasets. Copyright (c) 2009 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Complex brain networks: graph theoretical analysis of structural and functional systems.

            Recent developments in the quantitative analysis of complex networks, based largely on graph theory, have been rapidly translated to studies of brain network organization. The brain's structural and functional systems have features of complex networks--such as small-world topology, highly connected hubs and modularity--both at the whole-brain scale of human neuroimaging and at a cellular scale in non-human animals. In this article, we review studies investigating complex brain networks in diverse experimental modalities (including structural and functional MRI, diffusion tensor imaging, magnetoencephalography and electroencephalography in humans) and provide an accessible introduction to the basic principles of graph theory. We also highlight some of the technical challenges and key questions to be addressed by future developments in this rapidly moving field.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              From local explanations to global understanding with explainable AI for trees

              Tree-based machine learning models such as random forests, decision trees, and gradient boosted trees are popular non-linear predictive models, yet comparatively little attention has been paid to explaining their predictions. Here, we improve the interpretability of tree-based models through three main contributions: 1) The first polynomial time algorithm to compute optimal explanations based on game theory. 2) A new type of explanation that directly measures local feature interaction effects. 3) A new set of tools for understanding global model structure based on combining many local explanations of each prediction. We apply these tools to three medical machine learning problems and show how combining many high-quality local explanations allows us to represent global structure while retaining local faithfulness to the original model. These tools enable us to i) identify high magnitude but low frequency non-linear mortality risk factors in the US population, ii) highlight distinct population sub-groups with shared risk characteristics, iii) identify non-linear interaction effects among risk factors for chronic kidney disease, and iv) monitor a machine learning model deployed in a hospital by identifying which features are degrading the model’s performance over time. Given the popularity of tree-based machine learning models, these improvements to their interpretability have implications across a broad set of domains. Exact game-theoretic explanations for ensemble tree-based predictions that guarantee desirable properties.
                Bookmark

                Author and article information

                Contributors
                kjbin80@korea.ac.kr
                Journal
                Cogn Neurodyn
                Cogn Neurodyn
                Cognitive Neurodynamics
                Springer Netherlands (Dordrecht )
                1871-4080
                1871-4099
                3 September 2022
                3 September 2022
                August 2023
                : 17
                : 4
                : 845-853
                Affiliations
                GRID grid.222754.4, ISNI 0000 0001 0840 2678, Department of Neurology, , Korea University Anam Hospital, Korea University College of Medicine, ; Seoul, Republic of Korea
                Author information
                http://orcid.org/0000-0002-0778-1570
                http://orcid.org/0000-0002-9991-3664
                http://orcid.org/0000-0002-8013-9349
                Article
                9877
                10.1007/s11571-022-09877-0
                10374505
                21f85b15-0c71-40bf-8fc3-32ed9d2387a0
                © The Author(s) 2022

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 7 January 2022
                : 19 May 2022
                : 19 August 2022
                Funding
                Funded by: Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education
                Award ID: 2020R1I1A1A01073998
                Award Recipient :
                Funded by: Korea University College of Medicine
                Award ID: K2022991
                Award Recipient :
                Categories
                Research Article
                Custom metadata
                © Springer Nature B.V. 2023

                Neurosciences
                network,nonconvulsive status epilepticus,toxic metabolic encephalopathy,machine learning,differential diagnosis

                Comments

                Comment on this article