7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Toward a deeper understanding of Visualization through keyword analysis

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present the results of a comprehensive analysis of visualization paper keywords supplied for 4366 papers submitted to five main visualization conferences. We describe main keywords, topic areas, and 10-year historic trends from two datasets: (1) the standardized PCS taxonomy keywords in use for paper submissions for IEEE InfoVis, IEEE Vis-SciVis, IEEE VAST, EuroVis, and IEEE PacificVis since 2009 and (2) the author-chosen keywords for papers published in the IEEE Visualization conference series (now called IEEE VIS) since 2004. Our analysis of research topics in visualization can serve as a starting point to (a) help create a common vocabulary to improve communication among different visualization sub-groups, (b) facilitate the process of understanding differences and commonalities of the various research sub-fields in visualization, (c) provide an understanding of emerging new research trends, (d) facilitate the crucial step of finding the right reviewers for research submissions, and (e) it can eventually lead to a comprehensive taxonomy of visualization research. One additional tangible outcome of our work is an application that allows visualization researchers to easily browse the 2600+ keywords used for IEEE VIS papers during the past 10 years, aiming at more informed and, hence, more effective keyword selections for future visualization publications.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: not found
          • Article: not found

          Design Study Methodology: Reflections from the Trenches and the Stacks

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Empirical Studies in Information Visualization: Seven Scenarios

            We take a new, scenario-based look at evaluation in information visualization. Our seven scenarios, evaluating visual data analysis and reasoning, evaluating user performance, evaluating user experience, evaluating environments and work practices, evaluating communication through visualization, evaluating visualization algorithms, and evaluating collaborative data analysis were derived through an extensive literature review of over 800 visualization publications. These scenarios distinguish different study goals and types of research questions and are illustrated through example studies. Through this broad survey and the distillation of these scenarios, we make two contributions. One, we encapsulate the current practices in the information visualization research community and, two, we provide a different approach to reaching decisions about what might be the most effective evaluation of a given information visualization. Scenarios can be used to choose appropriate research questions and goals and the provided examples can be consulted for guidance on how to design one's own study.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Policy and the mapping of scientific change: A co-word analysis of research into environmental acidification

                Bookmark

                Author and article information

                Journal
                2014-08-13
                Article
                10.1109/TVCG.2016.2598827
                1408.3297
                21bc2957-67fd-4d1e-bdf9-dac4bb2aef41

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                cs.DL
                ccsd

                Information & Library science
                Information & Library science

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content209

                Cited by3

                Most referenced authors475